کاربرد هوش‌ مصنوعی در شبیه‌سازی توزیع مکانی چگالی برف در مناطق نیمه خشک (مطالعة موردی: سرشاخه‌های دشت یزد - اردکان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مرتع و آبخیزداری، دانشگاه اردکان

2 دانشجوی کارشناس ارشد آبخیزداری دانشگاه یزد

چکیده

مناطق خشک و نیمه­خشک همواره با بحران آب مواجه بوده‌اند، به همین دلیل ذخایر هرچند اندک برفی در سرشاخه‌های کوهستانی این مناطق، نقش شایان توجهی در تغذیه و تعادل هیدرولوژیکی مناطق مذکور ایفا می‌کنند. چگالی برف از جمله پارامتر‌هایی است که به عنوان پارامتر مبدل عمق برف به آب معادل برف، اهمیت فراوانی دارد. در این مقاله، کارآیی یکی از روش­های هوش مصنوعی در شبیه‌سازی پراکنش مکانی چگالی برف در یکی از سرشاخه‌های دشت یزد – اردکان ارزیابی شده است. به همین منظور، ابتدا داده‌های چگالی برف با استفاده از نمونه­بردار مدل مونت ـ رز در 216 نقطه از منطقة سخوید یزد برداشت گردید. سپس با استفاده از مدل رقومی ارتفاع و در محیط جغرافیایی ساگا 32 پارامتر ژئومرفومتری، به عنوان داده‌های ورودی استخراج شد. الگوریتم مورد استفاده در هوش مصنوعی، شبکة عصبی مصنوعی بوده که جهت دستیابی بهینه به آن، مدل­ها و توابع متفاوت با آرایش نورون‌های مختلفی بررسی گردیدند. بهترین شبکه به صورت 1-9-32 و حاوی مدل پرسپترون چند لایه و با الگوریتم پس انتشار خطاو تابع فعالیّت سیگموئید و خروجی خطی بود. نتایج پژوهش نشان داد که میزان ضریب همبستگی داده‌های مشاهداتی و برآورد شده 86 درصد و مجذور میانگین مربع خطا برابر 1/5 است. بدین‌ترتیب استفاده از ابزارهای هوش مصنوعی به خوبی توانسته است توزیع مکانی چگالی برف را برآورد نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Application of artificial intelligence in simulation of spatial distribution of snow density in semi-arid regions: A case studyof upstream regions of Yazd-Ardakan plain

نویسندگان [English]

  • ali Fathzadeh 1
  • samana Gharaei Manesh 2
چکیده [English]

Water crisis is one of the most important problems in arid and semi-arid regions, so snowfall occurring  in upstream parts of mountainous basins has an enormous role in hydrological balance. In this paper, the spatial distribution of snow density in Sakhvid, Yazd has been studied using an artificial neural network. Snow density is an important parameter for assessment of water resources in mountain basins, and, with thecorresponding data and snow depth, snow water equivalent values can be calculated. For this purpose, 216 in-situ snow density data were measured using the Mt. Rose sampler. Then, using SGA-GIS software, 32 geo-morphometric parameters were calculated from DEM. The best network was 1-9-32 with a multilayer perceptron model, the back-propagation algorithm,the sigmoid activation function, and a linear output. In order to evaluatethe network, the ANN correlation coefficient and the root mean square error (RMSE) were used. The results showed that the correlation coefficient and RMSE of the observed and estimated data were 86 percent and 5.1 respectively. So, application of artificial intelligent can simulate the spatial distribution of snow density very well.

کلیدواژه‌ها [English]

  • Digital mapping
  • Interpolation
  • Cross validation
  • Snow density
  • Artificial neural network
تقی­زاده مهرجردی، روح‌الله، شهلا محمودی علی اکبرزاده و هادی رحیمی‌لاکه، (1390)، بررسی روش­های مختلف برای ایجاد توابع انتقالی خاک­های بخشی از مناطق مرطوب شمال ایران. مجلة تحقیقات آب و خاک ایران، 99 - 107.
حجام، سهراب و زهرا شرعی­پور، (1382)، ذوب برف در حوضة آبریز طالقان. پژوهش­های جغرافیایی. 46، 49-62.
معروفی، صفر، حسین طبری حمید، زارع ابیانه و محمدرضا شریفی، (1389)، بررسی تأثیر باد برتوزیع مکانی برف انباشت در یکی از زیرحوضه­های کارون (مطالعة موردی: زیرحوضة صمصامی). فصلنامة علمی پژوهشی مهندسی آبیاری و آب، پایان نامة کارشناسی ارشد آبیاری و زهکشی.
طبری، حسین، صفر معروفی حمید، زارع ابیانه رضا امیری چایجان و محمدرضا شریفی، (1387)، مقایسة روش‌های ترکیبی و شبکة عصبی مصنوعی در تخمین آب معادل برف در زیرحوضة صمصامی. سومین کنفرانس مدیریّت منابع آب ایران، دانشگاه تبریز، دانشکدة مهندسی عمران.
Balk, B., & Elder, K. (2000). Combining binary decision tree and geostatistical methods to estimate snow distribution in a mountain watershed.Water Resources Research, 36, 13 – 26.
Cline, D. W., Bales, R. C., & Dozier, J. (1998). Estimating the spatial distribution of snow inmountain basins using remote sensing and energy balance modeling. Water ResourcesResearch, 34(5), 1275-1285.
Erikson, T. A., Williams, M. W., & Winstral, A. (2005). Persistence of topographic controls on the spatial distribution of snow in rugged mountain, Colorado, United States. Water Resources Research, 41,1-17.
Elder, k., Dozier, J., & Michaelsen, J. (1991). Snow accumulation and distribution in an Alpin Watershed. Water Resources Research, 27(7), 1541-1552.
Elder, K., Rosenthal, R., & Davis, R. E. (1998). Estimating the spatial distribution of snow water equivalent in a mountain watershed. Hydrology Processes, 12, 3627 – 3649.
Kazama, S., Izumi, H., Sarukkalige, P. R., Nasu, T., & Sawamoto, M. (2008). Estimating snow distribution over a large area and its application for water resources. Hydrological Processes, 22(13), 2315-2324.
Marchand, W. D., & Killingtveit, A. (2001). Analyses of the Relation Between Spatial Snow Distribution and Terrain Characteristics. 58th Eastern Snow Conference Ottawa, Ontario, Canada.
Tedesco, M., Pulliainen, J., Takala, M., Hallikainen, M., & Pampaloni, p. (2004). Artificial neural network- based techniques for the retrieval of SWE and snow depth from SSM/I data. Remote Sens. Environ. 90, 76 – 85. 
Steppuhn, H. (1981). Snow and Agriculture, In Handbook of Snow: Principles, Processes, Management and Use, The Blackburn Press, 776 pages.
U. S. Army Corps of Engineers. 1956. Snow Hydrology, N. Pac. Div.,Portland, Oregon.