بررسی روند و پیش بینی بارش با استفاده از شبکه عصبی مصنوعی در کاشان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد اقلیم شناسی، گروه جغرافیا، دانشگاه یزد

2 دانشجوی دکتری آب و هواشناسی، گروه جغرافیا، دانشگاه میبد

3 دانشجوی کارشناسی ارشد آب و هواشناسی، گروه جغرافیا، دانشگاه یزد

چکیده

بارش باران جز مهم‌‌ترین پدیده‌های جوّی است که بر زندگی بشر، پوشش گیاهی و جانوری تأثیر می‌گذارد. پیش‌بینی بارش باران برای اهداف مختلفی مانند فعالیت‌های کشاورزی، پیش‌بینی سیلاب، تأمین آب شرب و بسیاری از موارد از اهمیت بسیار بالایی برخوردار است. هدف این پژوهش بررسی روند و پیش‌بینی بارش ایستگاه کاشان طی دوره 49 ساله (1350-1398) است. بنابراین ابتدا داده‌ها بارش گردآوری و سپس به‌صورت میانگین فصلی و سالانه تنظیم شدند. در ادامه با استفاده از روش من-کندال معنی‌داری روند بارش و با استفاده از روش برآورد کننده شیب‌خط سنس، میزان شیب‌خط روند، آزمون شد. طبق نتایج در سری‌های زمـانی میـانگین بارش کاشان روند معنی‌داری در سطوح اطمینان 99% و 95% مشاهده نگردید؛ اما بااین‌حال میانگین بارش کاشان به‌طور متوسط در هرسال حدود 60/0 میلی‌متر کاهش‌یافته است. همچنین با استفاده از روش شبکه عصبی مصنوعی داده‌های بارش جهت پیش‌بینی بررسی شد. طبق نتایج بعد از آزمون شبکه 2 لایه پنهان و 10 نرون در لایه‌های میانی مدل نسبتاً بهتری را ارائه کرد. با بررسی و تطبیق مقادیر نمودار همبستگی مشخص گردید پیش‌بینی بارش برای ایستگاه کاشان با نتایج واقعی ایستگاه مطابقت کاملی نداشته است. همبستگی بین مقادیر واقعی و پیش‌بینی‌شده توسط شبکه برابر با 47/0 می‌باشد. همچنین ثابت شد مقادیر پیش‌بینی‌شده بارش توسط شبکه عصبی در ترکیب با الگوریتم ژنتیک نزدیک‌تر به داده‌های واقعی بارش و داده‌های پیش‌بینی‌شده توسط شبکه عصبی بدون ترکیب با الگوریتم ژنتیک از مقدار واقعی دورتر بوده و روند غیرخطی دارد. بنابراین بین میانگین‌های شبیه‌سازی‌شده بارش با مقدار واقعی در ایستگاه کاشان اختلافی فروانی وجود ندارد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of trend and precipitation forecast using artificial neural network during 49 years (Case study in Kashan station)

نویسندگان [English]

  • kamal omidvar 1
  • nezam tani 2
  • Mohamad Javad Ezadi 3
1 Professor of Climatology, Yazd University, Iran
2 PhD in Meteorology, Meybod University, Iran
3 Master student of Climatology, Yazd University, Iran.
چکیده [English]

Introduction
Rainfall is one of the most complex and accidental natural phenomena. The impact of tangible or intangible factors is so effective in creating an accident Which has led this process from a clear legal system to a complex and chaotic one. In general, understanding how the climate is changing. In particular, the trend of precipitation changes is one of the issues that have been considered by atmospheric and hydrological researchers in recent years. Neural networks are simple computational tools for testing data and creating models of data structures Reduction of rainfall in Kashan station is one of the problems that has caused many agricultural lands to be taken out of the agricultural cycle due to quantitative and quantitative water loss. And it has led to many economic and social problems, such as immigration. Therefore, studying, detecting, and forecasting rainfall in this region can be useful for the present and future of decision-makers to solve the problems of the region.
Materials and methods
This research is of applied type and its method is descriptive-analytical and the study area in Kashan city. Required data during the statistical period of the Kashan synoptic station is obtained from the Meteorological Organization to determine the trend of precipitation changes The Man Kendall method is used the Mann-Kendall test is one of the most common and widely used non-parametric methods of time series trend analysis. Using the Man-Kendall method, data changes are identified, and their type and time are determined. In this research, to implement different neural network models and determine the optimal structure, the neural network toolbox in MATLAB software has been used. One of the most widely used neural network models is the multilayer perceptron model, which is based on a post-diffusion algorithm. In this type of network, forward input data is processed and the processing path does not return to the neurons of the previous layer, and the output of each layer will only affect the next layer.
Results and discussion
In order to investigate the trend of increasing or decreasing the amount of precipitation in Kashan station, the Sense slope method was used, and to evaluate the significance of the precipitation trend, the Mekendal method was used. The results of the annual analysis showed that in general, no significant trend was observed in the average rainfall time series of Kashan. Therefore, no natural jump has been observed in the average rainfall of the Kashan station. Sense test statistics at 99% and 95% confidence levels confirm the decrease in rainfall at Kashan station. Thus, the rainfall of the studied station during the study time series has decreased by -0.6 mm each year. The greatest impact of reduced rainfall is related to winter. The most important advantage of the neural network over other intelligent systems is the ability of the network to learn from its surroundings. First, the data for entering the network was divided into three categories, 70% of which were for network training, and 30% of the data was allocated for testing and validation. Finally, due to repeated trials and errors to build a suitable network, a network with two hidden layers and 10 neurons had the highest accuracy for prediction. Optimization diagram for artificial neural network Kashan station precipitation data showed that 110 artificial neural networks were created in repetition. In this research, the network was able to predict the amount of precipitation using the introduced variable of correlation rate of 0.47 According to the results obtained from the values predicted by the network in combination with genetic algorithms such as actual precipitation data and predicted data It has a nonlinear process by the network without combination with genetic algorithm. But the difference in results for the simulated precipitation averages at Kashan station is still clear.
Conclusion
n the present study, the precipitation data of the Kashan synoptic station were evaluated seasonally and annually using the Menkendal method and Sense slope. The results of the Menkendal test trend in seasonal and annual average rainfall time series showed that there is no significant trend in 99% and 95% levels. On average, Kashan station has had a decrease of -0.60 mm of precipitation every year. At first glance, it seems that this decrease (0.6 mm) in Kashan's very dry station and low rainfall is a small amount. But for a period of 50 years, this reduction reaches 30 mm, if this trend continues in the long run, it will have very catastrophic consequences for the region's groundwater, agriculture, and drinking water basins. Also, an artificial neural network method was used to predict monthly rainfall. According to the results of using the multilayer perceptron model using the error propagation algorithms and the number of 10 neurons in the middle layers and two hidden layers had less error than other structures. Therefore, the variable introduced in the study with a correlation rate of 0.47 was able to predict the amount of precipitation. By reviewing and adapting the values of real data, the forecast, and the results of the correlation diagram, it was found that the precipitation forecast for Kashan station was to a reasonable extent consistent with the actual results of the station. According to the results, the error obtained from simulating precipitation data of Kashan station using neural network performance was very low, which indicates the proper performance of the network in the testing and validation stage Finally, the ability to estimate and predict precipitation using artificial neural network (ANN) at Kashan station has performed better in the months of low rainfall and the dry period when rainfall is minimized. But in general, the artificial neural network for predicting rainfall in Kashan station has shown high performance

کلیدواژه‌ها [English]

  • Precipitation
  • Kashan
  • Men-kendal
  • Sense slope
  • neural network
  • Aksoy, H. & Dahamsheh, A. (2018). Markov chain-incorporated and synthetic data-supported conditional artificial neural network models for forecasting monthly precipitation in arid regions. Journal of hydrology, 562, 758-779.
  • Alijani, B. (2000). Synoptic Climatology, First Edition, Shams Publications.
  • Chang NB, Yang YJ, Imen S, Mullon L. (2017). Multi-scale quantitative precipitation forecasting using nonlinear andnonstationary teleconnection signals and artificial neural network models. Journal of HydrologyMay 31; 548:305.
  • Country Plan and Budget Organization (2016). Statistical Yearbook of Iran, Statistics Center of Iran, Tehran, Statistics Center
  • Hall, T. Brooks, H.E., Doswell, C. A. (1999), Precipitauion forecasting using a neural network, Weather and Forecasting, No. 144, pp. 338-34.
  • karbalaee doree A R, Hejazi Zadeh Z. (2017). Optimizing building orientation establishment in the city of Kashan, based on climatic conditions. Arid Regions Geographic Studies. 7 (27):85-103
  • Kendall, M.G. 1975. Rank Correlation Methods, 4th edition, Charles Griffin, London.
  • Khalili, N. Khodashenas, S., Davari, K., Mousavi Baigi, M. (2009). Prediction of daily rainfall using artificial neural networks (Case study: Mashhad Synoptic Station). Watershed Management Research, 23 (4 (consecutive 89), 7-15.
  • Khosravi, M. Nasiri, M., Safavi, A., Narjes P. (2012). Prediction of drought using artificial neural network, Case study of Shiraz, Geographical studies of arid regions, 2 (1), 119-103
  • Lettenmaier, D.P. Wood, E.F. and Wallis, J.R. (1994). Hydro-climatological trends in the Continental United States, 1948-88. Journal of Climate, 7: 586-607.
  • XU, Zhou.H, Du L, Yao H, Wang H. (2015) Precipitation trends and variability from 1950 to 2000 in arid lands of Central Asia, Journal of Arid Land, 7: 514–526.
  • Llasat, M. C. del Moral, A. Cortès, M., & Rigo, T. (2021). Convective precipitation trends in the Spanish Mediterranean region. Atmospheric Research, 257, 105581.
  • Mann, H.B. 1945. Non-parametric tests against trend, Econometrica 13:163-171.
  • Mohammadi, b. (2010). Analysis of annual rainfall trend in Iran. Geography and Environmental Planning (Journal of Humanities Research, University of Isfahan), 22 (3 (43)), 95-106.
  • Omidvar, K. Nabavizadeh, M., Samreh Qasim, M. (2015). Evaluation of the accuracy of Narex recursive artificial neural network in predicting daily rainfall in Kerman province. Natural Geography, 8 (27), 73-89.
  • Sharghi, E. Jabbarian P. (2021). Estimation of rainfall and runoff prediction limits on artificial neural network. Journal of Civil and Environmental Engineering, University of Tabriz, doi: 51.4 (105), 57-67.
  • Togrul, I. T. and Pehlivan, D. (2004). Modeling of thin layer drying kinetics of some fruits under open-air sun drying process. Journal of Food Engineering. 65: 413–425.
  • Torres-Batlló, J., & Martí-Cardona, B. (2020). Precipitation trends over the southern Andean Altiplano from 1981 to 2018. Journal of Hydrology, 590, 125485.
  • Vivekanandan, N. (2007), Analysis of Trend in Rainfall Using Non Parametric Statistical Methods, international symposium on rainfall rate and radio wave propagation", American institute of physics. P101-113.
  • Wang, Y. Liu, J. Li, R., Suo, X., & Lu, E. (2020). Precipitation forecast of the Wujiang River Basin based on artificial bee colony algorithm and backpropagation neural network. Alexandria Engineering Journal, 59(3), 1473-1483.
  • Yang, X. Yang, S. Tan, M. L. Pan, H. Zhang, H. Wang, G., ... & Wang, Z. (2022). Correcting the Bias of Daily Satellite Precipitation Estimates in Tropical Regions Using Deep Neural Network. Journal of Hydrology, 127656.