تحلیل فضایی جزایر حرارتی شهر قم به عنوان نمایه ای از محیط زیست شهری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد علوم محیط‌ زیست، دانشگاه زنجان، زنجان، ایران

2 دانشیار گروه علوم محیط‌زیست، دانشگاه زنجان، زنجان، ایران.

3 استاد گروه علوم محیط‌زیست، دانشگاه زنجان، زنجان، ایران

چکیده

روند جزیره حرارتی شهری در بعد زمان و مکان به دلایلی نظیر تغییر در کاربری اراضی، پوشش گیاهی، پارامترهای اقلیمی و ... درحال تغییر است و در پی آن معضلات محیط زیستی گسترده‌ای را به همراه دارد. به دلیل این مهم، در این پژوهش سعی شده است تا روند تغییرات جزیره حرارتی شهر قم با استفاده از تکنیک‌های خودهمبستگی فضایی در یک بازه زمانی 21 ساله (1379 تا 1399) و با هدف شناسایی مناطق بحرانی محیط زیستی مورد بررسی قرار گیرد. برای دستیابی به این هدف، از تصاویر ماهواره لندست 7 (ETM+) و لندست 8 (OLI/TIRS) جهت محاسبه دمای سطح زمین (LST )، از آماره‌های موران جهانی و موران محلی برای بررسی خودهمبستگی فضایی و آماره‌ی Gi* جهت تعیین لکه‌های سرد و گرم و از شاخص وضع بحرانی محیط زیست شهری برای شناسایی مناطق بحرانی محیط زیستی استفاده شده است. نتایج نشان داد بیش ترین دما مربوط به زمین‌های بایر اطراف شهر و کم ترین مقدار دما مربوط به نواحی حاوی پوشش گیاهی و فضای سبز بوده است؛ به عبارتی دیگر شبه جزیره حرارتی گرم در حاشیه شهر و جزایر حرارتی سرد در مرکز شهر طی دوره مورد مطالعه تشکیل شده است. نتایج حاصل از خودهمبستگی فضایی موران عمومی نشان داد که دمای سطح زمین در شهر قم دارای ساختار فضایی بوده و الگوی توزیع آن‌ها به صورت خوشه‌ای می‌باشد. همچنین نتایج شاخص وضع بحرانی محیط زیست شهری نشان داد پهنه‌هایی با حساسیت بالا محیط زیستی در دوره مورد مطالعه در اطراف شهر طی دوره مورد مطالعه تشکیل شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Spatial Analysis of Heat Islands in Qom as an Index of Urban Environment

نویسندگان [English]

  • Fatemeh Ravanbakhsh 1
  • Younes Khosravi 2
  • Abdolhossein Pari Zanganeh 3
1 Department of Environmental Sciences, Zanjan, Zanjan, Iran
2 Department of Environmental Sciences, Faculty of Sciences, University of Zanjan
3 Department of Environmental Sciecnces, University of Zanjan, Zanjan, Iran
چکیده [English]

Introduction

Due to the phenomenon of urbanization, the types of land cover in urban areas have changed, which eventually leads to the formation of a distinct climate. Among these, urban heat islands are one of the most prominent phenomena in which some urban areas, especially city centers, will have temperatures several degrees warmer than the surrounding suburbs. Replacing the natural ground cover with paving, structures, asphalt and other urban constructions will eliminate the cooling effects of natural surfaces; So that by changing the pattern of local winds, enhancing the growth of clouds and fog, increasing the amount of lightning and the impact on rainfall, will change the climatic and local weather conditions. One of the most important parameters in the study of the heat island in the city is the Land surface temperature (LST). In general, surface temperature measurements are performed by meteorological stations, including synoptic and climatology. It should also be noted that meteorological stations are only able to measure temperature in certain places where they are already installed. What is considered as a major shortcoming in monitoring the surface temperature is the lack of sufficient meteorological stations to know the temperature values in places without stations. The aim of this study is extracting the surface temperature in Qom city in the period of 1379 and 1399, the temporal and spatial changes of land surface temperature using spatial statistics and finally identifying the critical environmental areas in Qom city.



Methodology

For spatial monitoring of heat island in Qom city, first Landsat satellite images of ETM+ and OLI/TIRS sensors related to Qom city (row 165 and route 36) for the years 2000 to 2020 (9 images) related to September in Clear weather conditions (cloud cover less than 1%) were obtained from glovis.usgs.org. In the first step after taking the images, all the required corrections, including atmospheric correction and radiometric correction were applied to the images. In the second step, one of the most valid methods, namely the Split Window algorithm, was used among the various methods for calculating the ground surface temperature, such as single-window, single-band and Sabal algorithms. In the next step, global Moran and local Moran’s I indices were used to analyze spatial autocorrelation and Gi* statistic was used to analyze hot and cold spots. Finally, to determine the urban environmental status, the deductive method of urban Environmental Criticality Index (ECI) was used.



Discussion and Results

According to the results, it was found that from 2000 to 2020, low and very low temperatures correspond to green space and vegetation, medium temperatures correspond to urban uses and high and very high temperatures correspond to the outskirts of the city and barren lands. . To determine the type of spatial correlation between land surface temperature in the two years, the global Moran spatial autocorrelation index was used. Based on the results of global Moran analysis, in both years (2000 and 2020) it was found that there was autocorrelation between the data and the data were distributed as clusters with high concentration in space. In order to show spatial changes and provide a clear picture of the distribution of temperature values in the city of Qom, the local Moran’s I index was used. According to results, the distribution of points in the obtained years has been such that high clusters in the two years 2000 and 2020 were on the outskirts of Qom. These clusters in both studied years corresponded to barren lands which had an increasing trend during the study period. Examining the Environmental Criticality Index, it was found that due to the creation of heat zones and the occurrence of a steep heat slope around the city over time, high-sensitivity zones in the study period around the city had an increasing trend. Examining the NDVI map, it can be clearly seen that the highest environmental sensitivities occurred in low value NDVI values and the lowest environmental sensitivities occurred in reverse values.

Conclusion

By spatial and temporal monitoring of the heat islands in Qom, it was determined that during a period of 21 years (2000 to 2020), the temperature around the city compared to the internal temperature has had an increasing trend. In other words, it can be said that the areas of hot heat peninsula are formed on the outskirts of the city and cold heat islands are formed in the center of Qom city. Existence of green space inside the city, existence of dry and barren lands around the city, semi-arid climate, etc. have caused the areas around the city to have a trend of increasing temperature, and as a result, the central areas of the city due to their low temperatures relative to the surrounding areas appear as cold heat islands.

Keywords: Land Surface temperature, Heat islands, Spatial autocorrelation, Environmental Criticality Index, Qom

کلیدواژه‌ها [English]

  • Land Surface temperature
  • Heat islands
  • Spatial autocorrelation
  • Environmental Criticality Index
  • Qom
  • Ahmadi, M., Ashoorlu, D., & Narangi Fard, M. (2012). Temporal-spatial changes of thermal and land use patterns in Shiraz using ETM & TM sensor data. Remote Sensing and GIS of Iran, 4 (4), 68-55.
  • Ahmadi, M., Azadi., & Mobaraki, M. (2020). Investigation of Tabriz thermal islands with urban bioavailability approach. Researches in Earth Sciences, 11, 245-262.
  • Ahmadi, M., & Dadashi, a. (2017). The Identification of Urban Thermal Islands based on an Environmental Approach, Case Study: Isfahan Province. Geography and Environmental Planning. 28, 1-20.
  • Aghili Nasab, Z., Mohammadzadeh, M., Salman Mahini, A. R., & Zarei, H. (2013). Analysis of Urban Thermal Island Calculation Method Using Remote Sensing. Conference of Environmental Planning and Management, 8-3.
  • Alavipanah, S.K., Hashemi Darrehbadami, S., & Kazemzadeh, A. (2015). Spatial- Temporal Analysis of Urban Heat- Island of Mashhad City due to Land Use/ Cover Change and Expansion. Geographical. Urban Planning Research (GUPR). 3, 1-17.
  • Anselin, L. (1995). LISA. Geogr Anal, 27, 93-115.
  • Anselin, L. (2019). A local indicator of multivariate spatial association: extending Geary's C. Geographical Analysis, 51(2), 133-150.
  • Athick, A. M. A., Shankar, K., & Naqvi, H. R. (2019). Data on time series analysis of land surface temperature variation in response to vegetation indices in twelve Wereda of Ethiopia using mono window, split window algorithm and spectral radiance model. Data in brief, 27, 104773. Babaian, I., Rezaeipour, A., & Ahangarzadeh, Z. (2014). Simulation of Climate Comfort Index in Khorasan Razavi Province under Climate Change Scenarios, Geographical Studies of Arid Areas, 5, 112, 95-18.
  • Elsayed, ISM, (2012). Mitigation of the Urban Heat Island of the City of Kuala Lumpur, Malaysia. Middle-East.Journal of Scientific Research, 11,1602-1613.
  • Entezari, A., Dadashi rudbari, A., & Asadi, M. (2016). Assessing the autocorrelation of spatial-temporal temperature change in heat islands in Khorasan. Journal of Geography and Environmental Hazards,4, 125-146.
  • Estoque, R. C., & Murayama, Y. (2017). Monitoring surface urban heat island formation in a tropical mountain city using Landsat data (1987–2015). ISPRS Journal of Photogrammetry and Remote Sensing, 133, 18-29.
  • Farhadi, H., Faizi, M., & Sanaieian, H. (2019). Mitigating the urban heat island in a residential area in Tehran: Investigating the role of vegetation, materials, and orientation of buildings. Sustainable Cities and Society, 46, 101448.
  • Gallo, K. P. McNab, A. L. Karl, T. R. Brown, J. F. Hood, J. J. & Tarpley, J. D, (1993), The use of NOAA AVHRR data for assessment of the urban heat island effect. Journal of Applied Meteorology, 32(5), 899-908.
  • Getis, A., & Ord, JK. (1992). The analysis of spatial association by use of distance statistics. Geoger Anal, 24 (3), 189 – 206.
  • Goldblatt, R., Addas, A., Crull, D., Maghrabi, A., Levin, G. G., & Rubinyi, S. (2021). Remotely sensed derived (LST) as a proxy for air temperature and thermal comfort at a small geographical scale. Land, 10(4), 410.
  • Karami, M., Taheri Qasemabadi, J., & Asadullahi, A. (2018). Quantitative and qualitative changes of vegetation using satellite images and its relationship with climatic parameters. Quarterly Journal of New Research in Geographical Sciences. Architecture and Urban Planning, 13, 12 - 1.
  • Karimi Firozjaei, M., Kiavarz Mogaddam, M., & Alavi Panah, S.K. (2017). Monitoring and predicting spatial-temporal changes heat island in Babul city due to urban sprawl and land use changes. Journal of Geospatial Information Technology. 5, 123-151.
  • Kabano, P., Lindley, S., & Harris, A. (2021). Evidence of urban heat island impacts on the vegetation growing season length in a tropical city. Landscape and Urban Planning, 206, 103989.
  • Khosravi, Y., Heidari, M., Tavakoli, A., & Zamani, A. (2017). Analyzing of the Relationship between LST Changes and Spatial Pattern of Land Use changes. Modares Journal of Spatial Planning, 21, 119-144
  • Liu, L. & Zhang, Y. (2011). Urban heat island analysis using the Landsat TM data and ASTER data:A case study in Hong Kong.Remote Sensing,3,1535-52.
  • Mallick, J. Kant, Y. and Bharath, B.D. (2008). Estimation of land surface temperature overDelhi using Landsat–7 ETM+. Journal of the Indian geography union, 12 (3), 131–140.
  • Matson, M. Mcclain, E. P. McGinnis Jr, D & Pritchard, J. A. (1978). Satellite detection of urban heat islands. Monthly Weather Review, 106, 1725-34.
  • Mohammadpour, a., Alijani, B., Akbary, M., & Zeaiean Firouzabadi, P. (2021). Spatial and temporal analysis of the thermal islands of Gorgan urban areas. Geographical Planning of Space. 10, 157-172.
  • Purbantoro, B., Aminuddin, J., Manago, N., Toyoshima, K., Lagrosas, N., Sumantyo, J. T. S., & Kuze, H. (2018). Comparison of cloud type classification with split window algorithm based on different infrared band combinations of Himawari-8 satellite. Advances in Remote Sensing, 7(3), 218-234.
  • Ramezani, B., Dokht Mohammad, S. M. (2010), Recognition of the spatial boundary of heat island formation in Rasht. Journal of Urban Research and Planning 1 (1), 64-49.
  • Rogerson, P. A. (2006). Statistics Methods for Geographers: students Guide: Los Angels, California. SAGE Publications
  • Saleh, K., Hossny, M., & Nahavandi, S. (2017). Driving behavior classification based on sensor data fusion using LSTM recurrent neural networks. In 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), 1-6.
  • Senanayake, I. P., Welivitiya, W. D. D. P., & Nadeeka, P. M. (2013). Remote sensing based analysis of urban heat islands with vegetation cover in Colombo city, SriLanka using Landsat-7 ETM+ data. Urban Climate, 5, 19-35
  • Singh, N., Singh, S., & Mall, R. K. (2020). Urban ecology and human health: implications of urban heat island, air pollution and climate change nexus. In Urban Ecology, 317-334.
  • Torkashvand, M.G. (2017). Detection of Heat Islands over Arak City Based on Spatial Autocorrelation Analysis. Quterly Journal of Environmental Based Territorial Planning, 9, 123-148.