مدلسازی و پیش بینی پدیده گرد و غبار استان سیستان و بلوچستان بر اساس مدل برون یابی منحنی روند سری¬های زمانی

نویسندگان

1 دانشیار آب و هواشناسی دانشگاه سیستان و بلوچستان، زاهدان

2 دانشجوی دکتری آب و هواشناسی دانشگاه اصفهان

چکیده

منطقه جنوب شرق کشور از جمله مناطقی است که سالانه شاهد توفان­های گرد و غبار فراوان در محدوده سرزمینی خود است. بر اساس همین ضرورت، هدف نهایی پژوهش حاضر تحلیل سری­های زمانی توفان­های گرد و غباری استان در مقیاس­های ماهانه، فصلی و سالانه، شناسایی مدل احتمالی مولد داده­ها و در نهایت الگوسازی برای اظهار نظر در مورد رفتار آینده سری توفان­های گرد و غبار می­باشد. برای انجام پژوهش از آمار هفت ایستگاه بالای 20 سال دوره آماری (2008-1986) استفاده گردید. ابتدا تعیین روند توفان­های گرد و غبار برای ایستگاه­ها در مقیاس­های مختلف (ماهانه، فصلی و سالانه) توسط روش­های ناپارامتری صورت گرفت. برای برازش مدل مناسب جهت برآورد تغییرات توفان­های گرد و غبار در سطح استان در سال­های آتی با استفاده از روش­های کمی یک متغیره سری­های زمانی (برون­یابی منحنی روند، هموار کردن نمایی، روش هلت-وینترز و روش باکس- جنکینز) اقدام به تحلیل سری­ها گردید و در نهایت مدل مناسب جهت برازش توفان­های گرد وغبار استان سیستان و بلوچستان مدل برون­یابی منحنی روند مشخص گردید. نتایج پژوهش نشان داد که حداکثر روند به صورت افزایشی در فصول تابستان و پاییز در سطح استان مشاهده می­گردد و روند صعودی در سطح اطمینان 99 درصد به حداکثر خود در این فصول می­رسد. طی فرآیند تعیین روند و جهت آن برای فصول مشخص گردید که در سطح استان تنها در بخش شرقی در محدوده ایستگاه­های خاش و سراوان روند معنی­دار مشاهده نمی­گردد و سایر بخش­های استان دارای روند معنی­دار وجود دارد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Sistan and Balouchestan Province Based on Extrapolation of Time Series Curves

نویسندگان [English]

  • taghi tavoosi 1
  • akbar zahrai 2
1
2
چکیده [English]

The time series is to try it with the last of the series, a possible model for generating data to identify and comment on this model series is about the future behavior. Possible models for time series of the same patterns are random processes. General trend in the time series is quite variable and not predictable, is uncertain. Random by random changes in the level and slope processes that occur in the series are identified. Generally, quantitative methods for time series forecasting methods can be divided into variable and multivariate methods. Data used in this study using a quantitative variable is checked. Variable in a method of analyzing past data to identify an appropriate model and assuming changed model; it predicts the future behavior of the series are. Quantitative methods with a variable in a series of four methods that can be fitted model for the series include: extrapolation of the curve, smooth exponential, the Holth- winterz and Box -Jenkins. In the present series as an experimental station of the four methods were analyzed And the diffraction data set at the top station  of the curve is the best way to analysis extrapolation model was selected. Note that in addition to the monthly data showed a seasonal behavior for a series of linear trend and seasonal factors,Decomposition procedures were used. Decomposition procedures for the analysis of the series using the least squares regression line fitted to the data found. Multiplicative model in the next step in the process of sharing data, trend data are lacking. Then central moving average (with a length equal to the length of season), no trend data were mooted In each period, the median seasonal values of raw seasonal adjustment were calculated and then finally, the seasonal index for the data to the data was seasonally adjusted. Final results of time-series model to estimate changes in the scale of seasonal dust extraction for the stations studied, with graphs and charts to predict the final residual normal probability model was outlined. The remainder of the normal probability plots of the model cannot be assumed to be normal for the remaining stations of the on the occasion of his reason, and this model is fitted to time series data.

کلیدواژه‌ها [English]

  • Dust
  • Time Series
  • Modeling
  • Sistan and Baluchestan