برآورد میزان تبخیر و تعرق واقعی گیاه پسته با استفاده از الگوریتم سبال و تصاویر ماهواره ای لندست 8 (مطالعه موردی: حاشیه کویر ابرکوه در استان یزد)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه جغرافیا دانشگاه یزد، یزد، ایران

2 دانشجوی دکتری علوم و مهندسی مرتع، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

3 دانش آموخته کارشناسی ارشد باغبانی و زراعت، دانشکده علوم گیاهی، دانشگاه کالیفرنیا، دیویس، کالیفرنیا

چکیده

تبخیر و تعرق که شامل تبخیر آب از سطح خاک و تعرق از پوشش گیاهی می­باشد، یک پارامتر فیزیکی اساسی برای مدیریت منابع آب و نیاز آبی در بخش کشاورزی ­می­باشد. هدف از پژوهش حاضر، تعیین تبخیر و تعرق واقعی از سطح باغات پسته حاشیه کویر ابرکوه استان یزد به منظور استفاده بهینه از منابع آبی این منطقه می­باشد. بدین منظور از سری زمانی تصاویر ماهواره­ای لندست 8 با 16 تصویر در طول دوره رشد پسته در سال 1394 استفاده شد و سپس با استفاده از الگوریتم سبال نقشه­های تبخیر و تعرق باغات پسته در دوره­های 15 روزه مربوط به 4 مرحله اصلی فنولوژی گیاه پسته بدست آورده شد. مقایسه تبخیر روزانه بدست آمده از طریق الگوریتم سبال با تبخیر و تعرق بدست آمده از طریق روش فائو56 نشان داد نتایج دو مدل مطابقت خوبی با هم دارند؛ به طوری­که، میانگین میزان همبستگی در شش نقطه در طول فصل رشد بین دو روش سبال و فائو، 56، 77/0 و خطای RMSE بین این دو روش، 24/1 میلی­متر در روز بدست آمد. بر اساس نتایج، میانگین میزان تبخیر و تعرق پسته در سطح منطقه مطالعاتی در سال 1394، 1015 میلی­متر و در 83 درصد سطح باغات میزان تبخیر و تعرق واقعی در یک فصل رشد یک­ساله، 700 تا 1300 میلی­متر می­باشد. در ماه­های خرداد و تیر حداکثر میزان تبخیر و تعرق مشاهده شد. به طوری­که، در ماه­های نا­مبرده، میزان تبخیر و تعرق در دوره­های 15 روزه بین 80 تا 100 میلی­متر متغیر است. همچنین، بر اساس نتایج، 50 درصد میزان تبخیر و تعرق در بازه زمانی 1 خرداد تا 31 مرداد صورت می­گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of actual evapotranspiration of pistachio plants using the SEBAL algorithm and Landsat 8 images: A case study of Abarkooh desert margin in Yazd Province

نویسندگان [English]

  • Hamid Reza Ghafarian Malamiri 1
  • Hadi Zare Khormizi, 2
  • Morad Mortaz 3
1 Assistant Professor Department of Geography, Yazd University, Yazd, Iran
2 PhD Student of Range Management, Faculty of Natural Resources, University of Tehran, Karaj, Iran
3 Master' Degree, Horticulture and Agronomy, University of California, Plant Science Department, Davis, California
چکیده [English]

Introduction: Iran, along with the Mediterranean countries, is known as one of the main habitats of pistachio (Pistacia vera L.) in the world. This plant plays an important role in the economies of arid and semi-arid countries such as Iran, Turkey and Syria. Although pistachio crop can produce a medium-quality yield with low water consumption, proper irrigation management can help to increase yield with higher quality. Evapotranspiration, which involves the evaporation of water from the soil surface and transpiration from vegetation, represents the fundamental process of a hydrological cycle. Monitoring the spatial and temporal changes of evapotranspiration is very important for irrigation and water management, especially in arid areas. Evapotranspiration on a homogeneous surface can be measured using conventional techniques such as Bowen ratio, Eddie covariance, water balance, and on field surfaces using a lysimeter system. These methods are usually costly and time-consuming and also do not have the ability to be generalized at a large heterogeneous level. As a result, it is more desirable to use remote sensing methods that take these heterogeneities and changes into account. Several algorithms have been developed to determine evapotranspiration using satellite imagery. In this regard, the SEBAL algorithm is one of the most widely used methods to determine the actual evapotranspiration by remote sensing. The aim of the present study was to determine the actual evapotranspiration using the SEBAL algorithm during different phenological periods and the growing season in pistachio orchards on the edge of Abarkooh desert in Yazd Province. The results of this study can be used to effectively manage the water consumption and prevention of drought stress in pistachio gardens.
Methodology: The study area is located in Yazd Province, 20 km south of Dehshir district. The total study area is 13971 hectares, of which approximately 3160 hectares are covered with pistachio gardens. In the present study, 16 images of Landsat 8 with 16-day periods from 03/16/2015 to 11/11/2015 were used after the atmospheric, geometric and radiometric errors were corrected. The reason for choosing the mentioned time period is that this it is the active growing season of pistachios. In the next step, the input parameters of the SEBAL algorithm were prepared, and the actual daily evapotranspiration rates at the transit dates of the Landsat 8 were calculated. Then, the rates of evapotranspiration were obtained in 15-day phenological periods, including the four main stages of phenology and the entire one-year growth period of pistachios. Also, in order to evaluate the results, the daily evapotranspiration of pistachio trees in the passing days of the satellite was calculated according to FAO 56 guidelines and at six different points on pistachio lands. In the next step, the correlation coefficient and the RMSE of daily evapotranspiration were obtained by the SEBAL algorithm and the FAO 56 instructions.
Results and Discussion: A comparison of the daily rates of evapotranspiration obtained by SEBAL algorithm and the FAO 56 showed that the two models are well matched; the average correlation and RMSE at six points were 0.77 and 1.24 mm / day respectively. Based on the results, the average and maximum evapotranspiration of pistachios in a one-year growth period in 2015 in the study area were 1015 and 1650 mm respectively. Also, in 83% of the study area, the actual evapotranspiration rate in a one-year growing season was 700 to 1300 mm. The maximum rate of evapotranspiration was observed in June and July with a rate change between 80 to 100 mm during 15-day phenological stages. According to the results, 50% of evapotranspiration occurs in the period from June 1st to August 31st. The rates of pistachio evapotranspiration are different according to the climatic conditions, the water management system and the area. In some studies done outside Iran, the yearly rate of pistachio evapotranspiration have been found to be 800, 600 and 1018 mm. In two different studies in Ardakan region of Yazd, the actual evapotranspiration of pistachio trees was estimated 1133 and 1275 mm using the SEBAL algorithm. Another study in Yazd Province showed that more than 60% of Marvast pistachio gardens have a seasonal water consumption of 410 to 680 mm, while the cumulative evapotranspiration of the reference plant and the standard evapotranspiration and transpiration of pistachios in the same period were 1558 and 920 mm respectively. In other words, the pistachio trees in this area are under drought stress, which will reduce the crop yield.
Conclusion: Although valid terrestrial evapotranspiration data such as lysimetric data were not available in the study area to compare with the results of the Sebal algorithm, comparing these results with those of other studies in this field shows that the findings of the present study are accurate and dependable. Also, the comparison of the rates of daily evaporation obtained through the SEBAL algorithm and the FAO 56 method showed that the results of the two models were well matched. In general, the results of the present study suggest the capability of remote sensing techniques to calculate evapotranspiration and their usefulness in crop irrigation management.

کلیدواژه‌ها [English]

  • SEBAL
  • Irrigation management
  • Pistachio
  • Evapotranspiration
  • Abarkuh
Allen, R. G., Pereira, L. S., Howell, T. A., & Jensen, M. E. (2011) Evapotranspiration Information Reporting: I. Factors Governing Measurement Accuracy. Agricultural Water Management, 98, 899-920.
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: guidelines for computing crop requirements. Irrigation and Drainage Paper No. 56, FAO, Rome, Italy: 300 pp.
Allen, R. G., Tasumi, M., & Trezza, R. (2007). Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-Model. Journal of irrigation and drainage engineering, 133(4), 380-394.
Allen, R. G., Waters, R., Tasumi, M., Trezza, R., & Bastiaanssen, W. (2002). “SEBAL, Surface energy balance algorithms for land, Idaho Implementation”. Advanced Training and Users Manual, version 1.0.
Bala, A., Rawat, K. S., Misra, A. K., & Srivastava, A. (2016). Assessment and validation of evapotranspiration using SEBAL algorithm and Lysimeter data of IARI agricultural farm, India. Geocarto International, 31(7), 739-764.
Bastiaanssen, W. G. M. (2000). SEBAL based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of Hydrology, 229, 87-100.
Bastiaanssen, W. G. M., Molden, D. J. & Makin, I. W. (2000). Remote sensing for irrigated agriculture: examples from research and possible applications. Agric. Water Manage. 46(2), 137-155.
Bastiaanssen, W. G. M., Noordman, E. J. M., Pelgrum, H., Davids, G., Thoreson, B. P., & Allen, R. G. (2005). SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. Journal of irrigation and drainage engineering, 131(1), 85-93.
Bastiaanssen, W. G., Menenti, M., Feddes, R. A., & Holtslag, A. A. M. (1998) a. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of hydrology, 212, 198-212.
Bastiaanssen, W. G., Pelgrum, H., Wang, J., Ma, Y., Moreno, J. F., Roerink, G. J., & Van der Wal, T. (1998) b. A remote sensing surface energy balance algorithm for land (SEBAL): Part 2: Validation. Journal of hydrology, 212, 213-229.
Bellvert, J., Adeline, K., Baram, S., Pierce, L., Sanden, B., & Smart, D. (2018). Monitoring crop evapotranspiration and crop coefficients over an almond and pistachio orchard throughout remote sensing. Remote Sensing, 10(12), 2001.
Bezerra, B. G., Silva, B. B., Santos, C. A. C. D., & Bezerra, J. (2015). Actual evapotranspiration estimation using remote sensing: comparison of SEBAL and SSEB approaches. Advances in Remote Sensing, 4(3), 234-247.
Bezerra, B.G., Santos, C.A.C., Silva, B.B., Perez-Marin, A.M., Bezerra, M.V.C., Bezerra, J.R.C., & Ramana Rao, T.V. (2013) Estimation of Soil Moisture in the Root-Zone from Remote Sensing Data. Revista Brasileira de Ciência do Solo, 37, 595-603.
Bouwer, L. M., Biggs, T. W., & Aerts, C. J. H. (2008) Estimates of Spatial Variation in Evaporation Using Satellite-Derived Surface Temperature and a Water Balance Model. Hydrological Processes, 22, 670-682.
Dastoorani, M., Poormohammadi, S., & Rahimian, M. (2012). Estimation of Actual Evapotranspiration in Ardakan Pistachio Orchards Using Remote Sensing. Journal of Water Research in Agriculture, 26.1(1), 1-13. (in Farsi)
Farhadi Bansouleh, B., Karimi, A., & Hesadi, H. (2016). Estimation of Actual Evapotranspiration in Mahidasht using SEBS Algorithm and LANDSAT Images. Journal of Water and Soil, 30(3), 706-716. (in Farsi)
Farshi, A. A., Shariati, M.R., Jaroelahi, R., Ghaemi, M. R., Shahabifar, M., & Tavallaei, M. M. (1997). An Estimate of Water Requirement of Main Field Crops and Orchards in Iran. Mnistry of Agriculture, Agricultural and Natural Resource Organization, Water and Soil Research Institute Press, Karaj, Iran. 630pp. (in Farsi)
Gao Y., Long D., & Li, Z. L. (2008). Estimation of daily actual evapotranspiration from remotely sensed data under complex terrain over the upper Chao river basin in North China. International Journal of Remote Sensing. 29 (11): 3295-3315.
Ghafarian Malamiri, H., & Zare Khormizie, H. (2017). Reconstruction of cloud-free time series satellite observations of land surface temperature (LST) using harmonic analysis of time series algorithm (HANTS). Journal of RS and GIS for Natural Resources, 8(3), 37-55. (in Farsi)
Ghafarian Malamiri, H., Rousta, I., Olafsson, H., Zare, H., & Zhang, H. (2018). Gap-Filling of MODIS Time Series Land Surface Temperature (LST) Products Using Singular Spectrum Analysis (SSA). Atmosphere, 9 (9), 334.
Ghamarnia, H., & rezvani, S. V. (2014). Calculation and Zoning of Evapotranspiration using SEBAL method In the West of Iran (Miandarband Plain). Journal of Water and Soil, 28(1), 72-81. (in Farsi)
Goldhamer, D. A., & Beede, R. (1993). Results of four years of regulated deficit irrigation on deep rooted pistachio trees. Annual Report of the California Pistachio Industry; Crop Year 1992-93. California Pistachio Commission. Fresno, CA 107-110.
Kamble, B., Irmak, A., Hubbarb, K., & Gowda, P. (2013) Irrigation Scheduling Using Remote Sensing Data Assimilation Approach. Advances in Remote Sensing, 2, 258-268.
Karbasi, M., Moghadam, M., Nikbakht, J., & kaviani, A. (2016). Estimation of crop actual evapotranspiration using SEBAL algorithm (Case study: Khoramdareh region at Zanjan province). Iranian journal of Ecohydrology, 3(3), 427-437. (in Farsi)
Menenti, M., & Choudhury, B. J. (1993). Parameterization of land surface evapotranspiration using a location dependent potential evapotranspiration and surface temperature range. Exchange processes at the land surface for a range of space and time scales, 212, 561-568.
Mirzaee, F., Keshavarz, M., & Vazifedoust, M. (2018). Development of a new algorithm (SM-SEBAL) to evaluate Evapotranspiration based on remote sensing data. Water Engineering, 11(38), 107-128. (in Farsi)
Morshedi, A., Tabatabaei, S. H., & Naderi, M. (2015). Verification SEBAL and Hargreaves –Samani Models to Estimate Evapotranspiration by Lysimeter Data. Journal of Water and Soil, 30(2), 367-376. (in Farsi)
Rahimian, M. H., Shayannejad, M., Eslamian, S., Gheysari, M., & Jafari, R. (2019). Daily and Seasonal Pistachio Evapotranspiration in Saline Condition: Comparison of Satellite-Based and Ground-Based Results. Journal of the Indian Society of Remote Sensing, 47(5), 777-787.
Rahimian, M. H., Taghvaeian, S., Nouri, M. R., Tabatabaei, S. H., Mokhtari, M. H., Hasheminejhad, Y., & Neshat, E. (2014). Estimating Pistachio Evapotranspiration using MODIS Imagery: A Case Study from Ardakan, Iran. In World Environmental and Water Resources Congress 2014 (pp. 1784-1794).
Rahimzadegan, M., & Janani, A. (2019). Estimating evapotranspiration of pistachio crop based on SEBAL algorithm using Landsat 8 satellite imagery. Agricultural Water Management, 217, 383-390.
Rawat, K. S., Bala, A., Singh, S. K., & Pal, R. K. (2017). Quantification of wheat crop evapotranspiration and mapping: A case study from Bhiwani District of Haryana, India. Agricultural water management, 187, 200-209.
Sharafati, A., Arzani, K., & Ramezani Moghaddam, M. R. (2013). Assessment of Flowering and Bearing of Twelve Pistachio (Pistacia vera L.) Cultivars Under Khorasan Environmental Conditions. Seed and plant improvement journal, 29-1(2), 243-256. (in Farsi)
Su, z. (2002). The Surface Energy Balance System (SEBS) for estimetion of turbulent heat fluxes. Hydrology and Earth System Sciences Discussions, 6 (1): 85-100.
Ulna, M., Kanber, R., Steduto, P., Aydin, Y., & Dlker, K. (2005). Effects of different water and nitrogen levels on the yield and periodicity of Pistachio. Turk J. Agric., 29: 39-49.
Wagle, P., Bhattarai, N., Gowda, P.  & Kakani, V. (2017). Performance of five surface energy balance models for estimating daily evapotranspiration in high biomass sorghum. ISPRS Journal of Photogrammetry and Remote Sensing. 128: 192-203.
Zamansani, E., khoorani, A., Sadeghi-e-lari, A., & Sadidi, J. (2017). Evaluation of evapotranspiration of wheat using SEBAL algorithm (Case study: Agricultural Research Station of Haji Abad). Physical Geography Research Quarterly, 49(4), 667-681. (in Farsi)
Zare khormizie, H., Hosseini, S. Z., Mokhtari, M. H., & Ghafarian Malamiri, H, R. (2017). Reconstruction of MODIS NDVI Time Series using Harmonic ANalysis of Time Series algorithm (HANTS). MJSP. 21(3), 221-255. (in Farsi)