تحلیل مکانی ویژگی های فیزیکوشیمیایی آب های زیرزمینی در جنوب و جنوب غربی حوضه آبریز دالکی استان بوشهر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه علوم محیط زیست، دانشکده علوم، دانشگاه زنجان، زنجان، ایران

2 دانشیار گروه علوم محیط زیست، دانشگاه زنجان

3 دانشجوی کارشناسی ارشد علوم محیط زیست، دانشگاه زنجان

چکیده

پایش مکانی ویژگی­های فیزیکوشیمیایی آب­های زیرزمینی به منظور حفظ و اصلاح کیفیت آن­ها به عنوان فاکتوری مهم در مباحث هیدرولوژیکی به­شمار می­آید. بدین منظور در این پژوهش به بررسی ساختار مکانی و تخمین مقادیر ویژگی­های فیزیکوشیمیایی آب­های زیرزمینی یکی از مهم­ترین حوزه­های جنوبی کشور یعنی حوضه آبریز دالکی استان بوشهر به کمک زمین­آمار و تحلیل واریوگرافی پرداخته شده است. برای انجام این پژوهش، داده­های مربوط به پراسنجه­های کلر، کلسیم، سدیم، سولفات، کل مواد جامد و منیزیم در 109 ایستگاه نمونه­برداری مربوط به سال 1395 مورد تحلیل قرار گرفت. همچنین برای انجام بررسی­های تغییرات مکانی پراسنجه­های مورد مطالعه از تغییرنگار تجربی استفاده شد. برای رسم نقشه‌های پهنه­بندی پراسنجه­ها از روش زمین­آماری کریجینگ معمولی با برازش مدل­های دایره­ای، نمایی، گوسی، کروی و درجه دو منطقی استفاده شد. نتایج نشان داد که مقدار پراسنجه‌ها در قسمت غربی و جنوب­غربی منطقه دارای بیش‌ترین میزان خود بوده و با حرکت به سمت بخش­های شرقی از مقدار آن­ها کاسته شده است. دلیل محتمل چنین رخدادی را می­توان به کشاورزی غیر اصولی در این منطقه و به تبع آن کاهش آب­های زیرزمینی نسبت داد.

کلیدواژه‌ها


عنوان مقاله [English]

Spatial analysis of the physical and chemical properties of groundwater in the south and southwest of Dalaki basin, Bushehr Province

نویسندگان [English]

  • Younes Khosravi 1
  • Abbasali Zamani 2
  • FatemehZahra Takin 3
1 Assistant Professor, Department of Environmental Science, Faculty of Sciences, University of Zanjan, Zanjan, Iran
2 Associate Professor, Department of Environmental Science, Faculty of Sciences, University of Zanjan, Zanjan, Iran
3 M.Sc Student of Environmental Science, Department of Environmental Science, Faculty of Sciences, University of Zanjan, Zanjan, Iran
چکیده [English]

Spatial monitoring of the physical and chemical properties of groundwater to maintain and improve their quality is a crucial issue in hydrological studies. Hence, in this study, the spatial structure of groundwater sources and their physical and chemical properties in one of the most important southern basins of Iran, Dalaki basin in Bushehr Province, are studied using Geostatistics and variogram analysis. The research data were collected and analyzed to determine chlorine, calcium, sodium, sulfate, total solids and magnesium in a sample of 109d stations in 2016. Variograms were used for the spatial variability of the studied parameters. To map those parameters, ordinary Kriging procedures were practiced to evaluate the circular, exponential, Gaussian, spherical and rational quadratic models in this regard. As the results showed, the high values of parameters are located in the west and southwest of the study area. They begin to decline toward the east. This may be attributed to non-normative agriculture and the consequent decrease of the groundwater in this area.

کلیدواژه‌ها [English]

  • Pollution
  • Groundwater
  • Geostatistics
  • Mapping
  • Dalaki basin
1. Adrian, Ch, Luigi J.R, Tim H.R, Malcolm H. (2013). Evaluating geostatistical methods of blending satellite and gauge data to estimate near real-time daily rainfall for Australia. Journal of Hydrology, 493, 105–114.
2. Babiker, I., Mohamed, M., Hiyama, T. (2007). Assessing groundwater quality using GIS. Water Resources.
3. Barcae,   E., Passarella, G. (2008). Spatial Evaluation of the Risk of Groundwater Quality Degradation: A Comparison between Disjunctive Kriging and Geostatistical Simulation, Environ Monit Assess. Journal of Environmental Monitoring and Assessment, 133: 261-273.
4. Cambardell,  C.A., Moorman,  T.B, Novak,  J.M., Parkin,  T.B., Karlen,  D.L., Turco,  R.F., Koropaka,  A.E. (1994). Field-scale variability of soil properties in centeral Iowa soils. Soil Science Society of America Journal, J, 58: 1501-1511.
5. Chen, Y., Wei, C., Yeh, H. (2007). Rainfall network design using kriging and entropy, Hydrol. Proc. 22 (3): 340-346.
6. Demir, Y., Ersahin, S., Güler, M., Cemek, B., Günal, H., Arslan, H. (2009). Spatial variability of depth and salinity of groundwater under irrigated ustifluvents in the Middle Black Sea Region of Turkey. Environ Monit Assess, 158(1-4): 279-4.
7. Els, V., Vera, V.L., Marc, V.M. (2006). Multivariate geostatistics for the predictive modelling of the surficial sand distribution in shelf seas, Continental Shelf Research, 26, 2454 – 2468.
8. Fetouani, S., Sbaa, M., Vanclooster, M., Bendra, B. (2008). Assessing Groundwater Quality in the Irrigated Plain of Triffa (North-East Morocco). Journal of Agricultural Water Management, 95: 133-142.
9. Hilaire, A.S., Ouarda, T.B., Lachance, M., Bob, B., Gaudet, J., and Gignac, C. (2003). Assessment of the impact of meteorological network density on the estimation of basin precipitation and runoff: a case study, Hydrol.Proc. 17: 3561-3580.
10. Jafarzadeh, N., Hassani, A.H., Zeinoddini, A., & Hassibi, A. (2005). Effects of Irregular Utilization of Kerman Pomegranate Groundwater Resources and Water Quality in the Region Using Quality Diagrams. Journal of Environmental Science and Technology, 7(1), 77-88.
12. Journel, A.G., Huijbregts, C.J. (1978). Mining Geostatistics, Academic Press Inc, London, UK, 600pp.
13. Khosravi, Y., & Abbasi, E. (2015). Spatial Analysis of Environmental Data with Geostatistics, Azarkelk Publications.
14. Lin, Z.H., Renxizi, R., Shenliang, Ch., Ping, D. (2014). Spatial variability of surface sediment basis on geostatistical analysis in the littoral area of Yellow River delta, China, Indian Journal of Geo-Marine Sciences, 43(4), 463-472.
15. Mahdavi, M. (1999). Applied Hydrology, Volume 2, University of Tehran Publications.
16. Matheron, G. (1971). The theory of regionalized variables and its applications, Paris École Nationale Supérieure des Mines de Paris.
17.  Meratai, E., Taheri, A., & Parsafar, N. (2017). Qualitative Zoning of Groundwater Resources Using Geostatistical and GIS Methods (Case Study: Soleyman Watershed). Journal of Soil and Water Knowledge, 27(2), 237-248.
18. Mohammadzadeh, M. (2006). Introducing Space Statistics. Student Statistics (Neda), 4(2), 1-12.
19. Nas, B. (2009). Geostatistical approach to assessment of spatial distribution of groundwater quality. Polish Journal of Environmental Studying, 6: 1073-1082.
20. Nguyen,  M.C., Zhang,  Y., Li,  J., Li,  X., Bai,  B., Wu,  H., Stauffer,  P. H. (2017). A geostatistical study in support of CO2 storage in deep saline aquifers of the Shenhua CCS project, Ordos Basin, China. Energy Procedia, 114, 5826-5835.
21. Nosratpur, S., Nosratpur, S.H., & Nosratpur, S. (2016). Application of Geostatistical Methods in Groundwater Quality Assessment and Zoning, New Conferences of the Environment and Agricultural Ecosystems. Institute of New Energy and Environment, University of Tehran. 3 October 95.
22. Raheli, N., & Mahini, S. (2013). Investigating the Relationship between Land Use Changes and Groundwater Quality (Case Study: Ghare Sou Watershed, Golestan Province). Journal of Environmental Research, 4(8), 15-24.
23.  Sabani, M. (1386). Spatial Analysis of Groundwater Pollution in Arsanjan Region, Research Project, Arsanjan University.
24. Sabani, M. (2011). Evaluation of Statistical Methods in Groundwater Quality Mapping and their Zoning (Case Study: Niriz Plain, Fars Province). Lar Geophysical Journal, 4(13), 83-96. 
 25. Sarann, L., Catherine Ch, Aurore, D. (2013). Different methods for spatial interpolation of rainfall data for operational hydrology and hydrological modeling at watershed scale, Biotechnol Agron Soc Environ (BASE), 17(2), 392-406.
 26. Schabenberger, O., Gotway, C.A. (2005). Statistical methods for spatial data analysis, Chapman & Hall/CRC, Boca Raton, 140p. Malaysia, Sci. Asia J, 29: 7-12.
 27. Shah, M.T., Ara, J., Muhammad, S., Khan, S., Tariq, S. (2012). Health risk assessment via surface water and subsurface water consumption in the mafic and ultramafic terrain, Mohmand agency, northern Pakistan.
28.  Khosravi, Y., Lashkari, H., Mottakan, A.A., & Asakereh, H. (2017). Modeling Water Steam Pressure Spatial Relationships Using Spatial Statistics Technique. Journal of Remote Sensing and GIS in Iran, 8(2), 35-52.
29. Sun  B, Zhou S, Zhao  Q. (2003) .Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical China,Geoderma,115:85-99.
30. Widory, D., Kloppmann, W., Chery, L., Bonnin, J., Rochdi, H., Guinamant, J. (2004). Nitrate in groundwater: an isotopic multi-tracer approach. Contaminant Hydrology, 72(4): 165-188.
31. Zahedifar, M., Musavi, A.A., Rajabi, M. (2013). Zoning the Groundwater Chemical Quality Attributes of Fasa Plain Using Geostatistical Approaches. Journal of Water and Soil (Agricultural Science and Technology), 27(4), 812-822.