شناسایی استراتژی‌ها و سازوکارهای تحقق شهر بدون کربن: یک فراتحلیل کیفی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه جغرافیا، دانشگاه سید جمال‌الدین اسدآبادی، اسدآباد، ایران

2 دکتری جغرافیا و برنامه‌ریزی شهری، دانشکده علوم انسانی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

این پژوهش با شناسایی استراتژی‌ها و سازوکارهای کلیدی، به دنبال تحلیل نظام‌مند و ارائه چارچوب نظری جامع برای تحقق شهر بدون کربن است. پژوهش حاضر با بهره‌گیری از روش فراتحلیل، از چارچوب استاندارد پریزما شامل مراحل شناسایی، غربالگری، ارزیابی واجد شرایط بودن و شمولیت منابع استفاده نموده است. با جست‌وجوی نظام‌مند در پایگاه‌های علمی معتبر نظیر الزویر، اشپینگر و ریسرچ‌گیت و با استفاده از معیارهای دقیق ورود و خروج، 37 منبع برای تحلیل نهایی انتخاب شدند. . 128 کد باز، هشت کد انتخابی و 39 کد محوری استخراج شدند که نشان‌دهنده اهمیت عواملی نظیر کاهش مصرف انرژی، مدیریت پسماند، جنگل‌داری شهری و علم و فناوری در تحقق شهر بدون کربن است. تحلیل زمانی نشان داد که تمرکز تحقیقات از مفاهیم عمومی به سمت مفاهیم خاص‌تری نظیر شهر هوشمند کم‌کربن و اقتصاد دایره‌ای تغییر یافته است. بر اساس یافته‌ها، تحقق شهر بدون کربن مستلزم همیاری ابعاد مختلف اجتماعی، اقتصادی و محیط‌زیستی است. در این راستا، مدل‌سازی نظری انجام شده که بر پیشران‌های درون‌زا (علم و فناوری، منابع و محیط زیست، اقتصاد و صنعت) و برون‌زا (امکانات، سرمایه و شرایط نهادی) تأکید دارد. این مدل، چارچوبی جامع برای برنامه‌ریزی و عملیاتی کردن شهرهای بدون کربن ارائه می‌دهد. پژوهش حاضر پیشنهاد می‌کند که سیاست‌گذاران و برنامه‌ریزان با توجه به شکاف‌های شناسایی‌شده، به‌ویژه در حوزه‌های محلی و منطقه‌ای، اقدام به تدوین استراتژی‌های سازگار و اختصاصی نمایند و از چارچوب نظری ارائه‌شده به‌عنوان راهنمای عملی در طراحی و اجرای شهرهای پایدار بدون کربن استفاده نمایند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identification of Strategies and Mechanisms for Achieving Zero-Carbon Cities: A Qualitative Meta-Analysis

نویسندگان [English]

  • Hafez Mahdnejad 1
  • Mansour Rezaali 2
1 Associate professor, of Geography Department, Sayyed Jamaleddin Asadabadi University, Asadabad, Iran
2 PhD in Geography and Urban Planning, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
چکیده [English]

1. Introduction

In recent decades, climate change and the increase in greenhouse gas emissions have emerged as one of the greatest global challenges. Cities, as the largest consumers of energy and resources, play a key role in either exacerbating or mitigating this phenomenon. Despite numerous efforts to achieve low-carbon and even carbon-free cities, the central question remains: what strategies and mechanisms can effectively lead to the realization of these goals? The importance of this issue becomes more apparent when considering that cities account for approximately 70% of global greenhouse gas emissions. This research aims to identify patterns, trends, and key mechanisms in achieving carbon-free cities through a systematic review of existing literature. The necessity of this study lies in the fact that, despite a significant volume of research on sustainable cities, there are still gaps in understanding and operationalizing strategies for achieving carbon-free cities. This paper, using a meta-analysis approach, seeks to answer the question of which factors (technical, managerial, social, and structural) act as the main drivers in realizing carbon-free cities. Ultimately, the present study provides a comprehensive theoretical framework to guide planners and policymakers in designing and implementing sustainable carbon-free cities.



2. Research Methodology

This research employs a meta-analysis approach to systematically review and evaluate existing studies on carbon-free cities. The PRISMA framework was used to ensure transparency and reproducibility, consisting of four main stages: identification, screening, eligibility assessment, and inclusion of sources. In the identification stage, a systematic search was conducted in reputable scientific databases such as Elsevier, Springer, Emerald, Wiley, Sage, and ResearchGate. A set of keywords, including "decarbonization," "post-carbon city," "low-carbon economy," and "low-carbon transition," was used, initially identifying 412 sources. After removing duplicates and irrelevant sources, 37 sources were selected for final analysis. Inclusion criteria consisted of sources directly addressing carbon-free cities and published in reputable journals or publications. Exclusion criteria included lack of access to full texts, lack of scientific credibility of authors, or high overlap with the research topic. In the data extraction stage, relevant information regarding the type of research, data collection methods, and key findings was extracted from each source. Subsequently, open coding was used to identify 128 open codes, which were then categorized into eight selective codes and 39 axial codes. Finally, content analysis and comparative methods were employed to identify patterns and trends.

3. Results and discussion

Data analysis revealed that the majority of sources were published in 2022 and 2023 (46%), with qualitative studies comprising 60% of the total. A total of 128 open codes, eight selective codes, and 39 axial codes were extracted, highlighting the importance of factors such as energy consumption reduction, waste management, urban forestry, and science and technology in achieving carbon-free cities. Temporal analysis showed a shift in research focus from general concepts like decarbonization to more specific ones such as smart low-carbon cities and circular economies. In terms of code frequency, codes related to buildings, energy, and urban transportation had the highest number of open codes, underscoring their significance. Pattern analysis indicated that the majority of open codes focused on reducing energy consumption, waste management, and urban forestry. Axial codes emphasized the critical role of science and technology, resources and environment, and economy and industry. Trend analysis from 1990–2003 to the present revealed a shift from general concepts like decarbonization to more specific ones such as carbon-free cities and circular economies. Comparative analysis among countries showed that developed nations focused more on advanced technologies and R&D investment, while developing countries emphasized waste management and climate adaptation. These findings provide a comprehensive understanding of the mechanisms driving carbon-free cities.

4. Conclusion

The findings indicate that achieving carbon-free cities requires the integration of social, economic, and environmental dimensions. Key strategies include reducing carbon emissions, improving energy efficiency, developing sustainable infrastructure, and promoting low-carbon lifestyles. These findings address the main research question by identifying strategies and mechanisms for achieving carbon-free cities. To this end, a theoretical model was developed, emphasizing internal drivers (science and technology, resources and environment, economy and industry) and external drivers (facilities, capital, and institutional conditions). This model offers a comprehensive framework for planning and operationalizing carbon-free cities. The theoretical implications include filling existing gaps in the literature and providing a holistic framework for understanding the mechanisms of carbon-free city realization. Practically, these findings can guide policymakers and planners in designing and implementing sustainable carbon-free cities. Recommendations include developing context-specific strategies for different regions, strengthening institutional and technological capacities, and promoting community participation in carbon reduction efforts. Additionally, future research is encouraged to explore local and regional factors influencing carbon-free city achievement and conduct comparative analyses between developed and developing countries.

کلیدواژه‌ها [English]

  • Low-carbon development
  • low-carbon economy
  • low-carbon society
  • low-carbon city
  • Post-carbon city
Baeumler, A., Ijjasz-Vasquez, E., & Mehndiratta, S.(2012). Sustainable Low-Carbon City Development in China. World Bank: Washington, DC.
Beveridge, R., Ridgway, M., Kern, K., Stroia, C., Fujiwara, N., Dupas, S., & Sterzel, T .(2015). Leading mid-sized EU cities in post-carbon transitions: towards a preliminary typology. Sustainability, 7(2015), 1-27.
Bottero, M., Dell’Anna, F., Morgese, V. (2021). Evaluating the Transition Towards Post-Carbon Cities: A Literature Review. Sustainability, 13(2021), 567.
Chatterton, P .(2013). Towards an agenda for post-carbon cities: Lessons from LILAC, the UK's first ecological, affordable, cohousing community. International Journal of Urban and Regional Research, 37 (5), 1654-1674.
Chen, L., Huang, H., Hua, J., Chen, Z., Wei, L., Osman, A. I., Fawzy, S., Rooney, D. W.,  Dong, L., & Yap, P .(2023). Green construction for low‑carbon cities: a review. Environmental Chemistry Letters, 21 (2023), 1627–1657.
Chen, W., Liu, J., Ning, X., Du, L., Zhang, Y., & Wu, C. (2023). LowCarbon City Building and Green Development: New Evidence from Quasi Natural Experiments from 277 Cities in China. Sustainability, 15(2023), 11609.
Dhar, S., Pathak, M., & Shukla, P. R. (2013). Low carbon city: A guidebook for city planners and practitioners: Promoting low carbon transport in India. UNEP Risø Centre on Energy, Climate and Sustainable Development. Department of Management Engineering. Technical University of Denmark (DTU).
Du, X., Shen, L., Ren, Y., & Meng, C .(2022). A dimensional perspective-based analysis on the practice of low carbon city in China. Environmental Impact Assessment Review, 95(2022), 106768.
Duan, Z., & Kim, S. (2023). Progress in Research on Net-Zero-Carbon Cities: A Literature Review and Knowledge Framework. Energies, 16(2023), 6279.
Falana, J., Osei-Kyei, R., & Tam, V .(2024). Towards achieving a net zero carbon building: A review of key stakeholders and their roles in net zero carbon building whole life cycle. Journal of Building Engineering, 82(­2024), 108223.
Fang, C., Pang, B., Liu, H .(2016). Quantitative Study on the Dynamic Mechanism of Smart Low-Carbon City Development in China. Sustainability journal, 8(2016), 507.
Gao, S., & Zhang, H .(2020). Urban Planning for Low-Carbon Sustainable Development. Sustainable Computing Informatics and Systems, 28(6),100398.
Gouldson, A., Colenbrander,S., Sudmant, A., McAnulla, F., Kerr, N., Sakai, P., Hall, S., Papargyropoulou, E., & Kuylenstierna, J .(2015). Exploring the economic case for climate action in cities. Global Environmental Change, 35(2015), 93-105
Huovila, A., Siikavirta, H., Rozado, C. A., Rökman, J., Tuominen, P., Paiho, S., Hedman, A.,&  Ylén, P .(2022). Carbon-neutral cities: Critical review of theory and practice. Journal of Cleaner Production, 341(2022), 130912.
Kafy, A. Al, Faisal, A. Al, Al Rakib, A., Fattah, M. A., Rahaman, Z. A., & Sattar, G. S. (2022). Impact of vegetation cover loss on surface temperature and carbon emission in a fastest-growing city, Cumilla, Bangladesh. Building and Environment, 208(1), 108573.
Kenis, A., Lievens, M. (2017). Imagining the carbon neutral city: the (post)politics of time and space. Environment and Planning A: Economy and Space, 49 (8), 1762-1778,
Liu, W., & Qin, B .(2016). Low-carbon city initiatives in China: A review from the policy paradigm perspective. Cities, 51(2016), 131-138.
Liu, J., Feng, H., Wang, K. (2022). The Low-Carbon City Pilot Policy and Urban Land Use Efficiency: A Policy Assessment from China. Land, 11(2022), 604.
Mander, S., Bows, A., Anderson, K., Shackley, S., Agnolucci, P., & P. Ekins. (2007). Uncertainty and the Tyndall decarbonisation scenarios. Global Environmental Change, 17 (1):25-36.
Martes, L., & Köhl, M. (2022). Improving the Contribution of Forests to Carbon Neutrality under Different Policies—A Case Study from the Hamburg Metropolitan Area. Sustainability, 14(2022), 2088.
Mazumdar, S., Thakker, D., Hayes, J., Matos, N., Bate, P .(2023). Towards achieving net zero by 2050 in the UK – Stakeholder perspectives in integrated urban planning. Futures, 152(2023), 103197.
Ohshita, S.B., Zhou, N., Price, L., Fridley, D., Khanna, N., Hong, L.X., Lu, H.Y., Fino-Chen, C., He, G. (2015). Low Carbon Development for Cities: Methods and Measures. In J.Y. Yan (Ed.), Handbook of Clean Energy Systems (3565-3587). London: Wiley
Pour, S. H., Wahab, A. K. A., Shahid, S., Asaduzzaman, M., & Dewan, A. (2020). Low impact development techniques to mitigate the impacts of climate-change-induced urban floods: Current trends, issues and challenges. Sustainable Cities and Society, 62(1), 102373.
Rahaman, Z. A., Kafy, A. Al, Saha, M., Rahim, A. A., Almulhim, A. I., Rahaman, S. N., Kalaivani, S., Al- Faisal, A., & Al Rakib, A . (2022). Assessing the impacts of vegetation cover loss on surface temperature, urban heat island and carbo emission in Penang city, Malaysia. Building and Environment, 222(1), 109335.
Saha, M., Kafy, A. Al, Bakshi, A., Faisal, A. Al, Almulhim, A. I., Rahaman, Z. A., Al Rakib, A., Abdul Fattah, M., Shaleha Akter, K., Rahman, M. T., Zhang, M., Rathi, R. (2022). . Modelling microscale impacts assessment of urban expansion on seasonal surface urban heat island intensity using neural network algorithms. Energy and Buildings, 275(1), 112452.
Sarker, Md.N.I., Hossin, Md.A., Hua, Y.X., Anusara, J., Warunyu, S., Chanthamith, B., Sarkar, Md.K., Kumar, N. and Shah, S. (2018) Low Carbon City Development in China in the Context of New Type of Urbanization. Low Carbon Economy, 9(2018), 45-61.
Shaw, A., Mander, S., Parkes, B., & Wood, R .(2023). Zero carbon transitions: a systematic review of the research landscape and climate mitigation potential. Frontiers in Energy Research. 11(2013),1268270.
Sudmant, A., Millward-Hopkins, J., Colenbrander, S., & Gouldson, A .(2016). Low carbon cities: is ambitious action affordable?. Climatic Change, 138 (2016), 681–688.
Sun, Y., Zhang, R., Du, X., Zhao, K., Qie, X., Zhang, X. (2023). Does Low-Carbon City Construction Promote Integrated Economic, Energy, and Environmental Development? An Empirical Study Based on the LowCarbon City Pilot Policy in China. Sustainability, 15(2023), 16241.
Tan, S., Yang, J., & Yan, J .(2015). Development of the Low-carbon City Indicator (LCCI) Framework. Energy Procedia 75 (2015) 2516 – 2522.
Too, J., Ejohwomu, A., Hui, F. K.P.,Duffield, C., Bukoye, O. T., Edwards, D. J .(2022).   Framework for standardising carbon neutrality in building projects. Journal of Cleaner Production, 373(2022), 133858.
Tozer, L., Klenk, N .(2018). Urban configurations of carbon neutrality: Insights from the Carbon Neutral Cities Alliance. Environment and Planning C: Politics and Space. 37(3), 1-22.
Xiaodong, W., Noureddine, B., Ximing, P., Lorraine, S. & Hua, D.L. (2012). Carbon cities in China: Characteristics, roadmap, and indicators. In Axel, B., Ede. I., and Shomik, M. (eds.), Sustainable Low-Carbon City Development in China. The World Bank: Washington: 63-95.
Wang, Z., Liang, F., Li, C., Xiong, W., Chen, Y., Xie, F .(2023). Does China's low-carbon city pilot policy promote green development? Evidence from the digital industry. Journal of Innovation & Knowledge, 8(2023), 100339.
Wang, L., Shao, J., & Ma, Y .(2023). Does China's low-carbon city pilot policy improve energy efficiency?. Energy, 283(2023), 129048.
Wang, X., Wang, G., Chen, T.,   Zeng, Z., &  Heng, C. K. (2023). Low-carbon city and its future research trends: A bibliometric analysis and systematic review. Sustainable Cities and Society, 90(1), 104381.
Wayne Hunter, G., Sagoe, G., Vettorato, D., & Jiayu, D .(2019). Sustainability of Low Carbon City Initiatives in China: A Comprehensive Literature Review. Sustainability, 11(2019), 4342.
Wei, J., &Wenmei, K .(2019). A Review on the Low-Carbon City Study: Development and Trends. Chinese Journal of Urban and Environmental Studies, 7. (2), 1950006
Wimbadi, R., & Djalante, R. (2020). From decarbonization to low carbon development and transition: A systematic literature review of the conceptualization of moving toward net-zero carbon dioxide emission (1995–2019). Journal of Cleaner Production, 256(2020), 120307.
Yao, L., Li, X., Zheng, R., & Zhang, Y. (2022). The impact of air pollution perception on urban settlement intentions of young talent in China. International journal of environmental research and public health, 19(3), 1080.
Yuan, H., Zhou, P., & Zhou, D .(2011). What is Low-Carbon Development? A Conceptual Analysis. Energy Procedia, 5 (2011) 1706–1712.
Zandalinas, S. I., Fritschi, F. B., & Mittler, R. (2021). Global Warming, Climate Change, and Environmental Pollution: Recipe for a Multifactorial Stress Combination Disaster Trends in Plant Science. Trends in Plant Science, 26(6), 588–599.
Zeng, S., Chu, Y., Yang, Y., Li, P., & Liu, H. (2022). Comprehensive Evaluation of Low-Carbon City Competitiveness under the “Dual-Carbon” Target: A Cross-Sectional Comparison between Huzhou City and Neighboring Cities in China. Systems, 10(2022), 235.
Zeng, S., Jin, G., & Tan, K., & Liu, X .(2023). Can low-carbon city construction reduce carbon intensity?Empirical evidence from low-carbon city pilot policy in China. Journal of Environmental Management, 332(­2023), 117363.
Zhang, H., Ding, X., & Liu, Y. (2023). The Impact of Low-Carbon Pilot Cities on the Development of Digital Economy: Empirical Evidence from 284 Cities in China. Sustainability, 15(2023), 10392
Zhao, M., Zhou, Y., Li, X., Cheng, W., Zhou, C., & Ma, T. (2020). Remote Sensing of Environment Mapping urban dynamics (1992 –2018) in Southeast Asia using consistent nighttime light data from DMSP and VIIRS. Remote Sensing of Environment, 248(1), 111980.
Zhou, N., Price, L., Ohshita, S., Zheng, N., & Min, H., .(2011). A Guidebook for Low-Carbon Development at the Local Level. Berkeley Lab: Berkeley.