ارزیابی اثرات کاهش سطح آب زیرزمینی بر پراکندگی پوشش گیاهی با مدل آنتروپی شانون(منطقه مورد مطالعه: شهرستان رشتخوار)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه آموزش جغرافیا، دانشگاه فرهنگیان، صندوق پستی889-14665 تهران، ایران

2 گروه آموزش جغرافیا، دانشگاه فرهنگیان، تهران، ایران

10.22034/grd.2025.23045.1657

چکیده

منابع آب زیرزمینی در مناطق خشک و نیمه‌خشک نقش حیاتی در پایداری پوشش گیاهی و نظام‌های معیشتی ایفا می‌کنند و افت آن‌ها پیامدهای اکولوژیکی و اجتماعی گسترده‌ای به همراه دارد. این پژوهش با هدف بررسی روند تغییرات پوشش گیاهی و ارتباط آن با افت سطح آب‌های زیرزمینی در شهرستان رشتخوار طی دوره ۱۹۹۰ تا ۲۰۲۳ انجام گرفت. بدین منظور از داده‌های ماهواره‌ای لندست، شاخص نرمال تفاضلی پوشش گیاهی (NDVI) و مدل آنتروپی شانون برای تحلیل ناهمگونی فضایی استفاده شد. نتایج نشان داد سطح آب زیرزمینی طی سه دهه گذشته بیش از ۵۰ متر افت داشته است. همزمان، مقدار آنتروپی شانون از ۰.۸۰۱ در سال ۱۹۹۰ به ۰.۹۲۴ در سال ۲۰۲۳ افزایش یافت که بیانگر تشدید پراکندگی فضایی و قطعه‌قطعه‌شدن پوشش گیاهی است. یافته‌ها آشکار ساخت که افزایش ناهمگونی پوشش گیاهی نه به معنای بهبود شرایط اکولوژیکی، بلکه ناشی از تغییرات کاربری زمین، جایگزینی محصولات کم‌آب‌بر و فشارهای انسانی بر منابع طبیعی است. پیش‌بینی‌ها نیز نشان می‌دهد که در صورت تداوم شرایط کنونی، پیامدهایی نظیر فرونشست زمین، شور شدن آبخوان و کاهش شدید توان کشاورزی در افق ۲۰۵۰ محتمل خواهد بود. نتایج این پژوهش بر ضرورت مدیریت یکپارچه منابع آب و اصلاح الگوی کشت به‌عنوان پیش‌شرط‌های کلیدی برای پایداری اکوسیستم‌های خشک تأکید دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of the Impacts of Groundwater Level Decline on Vegetation Cover Dispersion Using the Shannon Entropy Model(Study Area: Roshtkhar County)

نویسندگان [English]

  • Hamid Amoonia 1
  • Mohammadreza Yousefi Roshan 1
  • Amir Hasan Jangi 2
1 Department of Geography Education, Farhangian University, Tehran, Iran.
2 Department of Geography Education, Farhangian University, Tehran, Iran
چکیده [English]

Understanding vegetation spatial patterns is vital for assessing ecosystem health, especially in water-stressed arid and semi-arid regions. These areas, often characterized by sparse and sensitive vegetation, face significant challenges from climate change and human pressures. Rashtkhar County in Iran exemplifies such an environment, experiencing a severe decline in groundwater levels, which necessitates precise monitoring of its vegetation dynamics. Quantifying the spatial dispersion or heterogeneity of vegetation cover objectively is challenging. While indices like NDVI provide information on vegetation density, they often miss crucial details about spatial structure and fragmentation. Shannon's entropy model, derived from information theory, offers a robust method to measure the complexity or dispersion within a spatial system. Specifically, Shannon's relative entropy (G), a normalized index, allows for standardized comparisons of dispersion across time and space, effectively differentiating between uniform and highly fragmented landscapes. Given the ecological importance of vegetation in Rashtkhar and the intense pressure on its water resources, this study's primary objective was to utilize Shannon's relative entropy model to quantitatively assess the trend of spatial vegetation cover dispersion from 1990 to 2023. A key goal was to analyze the relationship between this dispersion trend, groundwater level fluctuations (approx. 1986-2022), and the region's topography. The findings aim to provide insights for sustainable resource management in similar vulnerable areas, highlighting the need for quantitative tools to understand complex ecosystem dynamics.

This research employed a descriptive-analytical approach using remote sensing and GIS to investigate quantitative trends in vegetation spatial dispersion in Rashtkhar County, a predominantly arid area in Khorasan Razavi Province, Iran (~4,360 km²). The study period covered 1990-2023 for vegetation and water years 1365-66 to 1400-1401 (approx. 1986-2022) for groundwater. Time-series Landsat imagery (TM and OLI sensors, 30m resolution) for 1990, 2000, 2010, 2015, 2020, and 2023 were acquired from USGS. After standard radiometric and atmospheric corrections, NDVI was calculated using ENVI 5.6 to map vegetation cover for each year. Groundwater level data were sourced from the provincial Regional Water Authority. To incorporate topography, the area was classified into five elevation zones using a DEM (Figure 3). Shannon's relative entropy model was then applied to quantify spatial dispersion annually. Relative entropy (G) was calculated as G = H / ln(n), where H = - Σ [pi * ln(pi)], 'pi' is the proportion of vegetation cover in topographic zone 'i', and 'n' is the number of zones (n=5). G ranges from 0 (maximum concentration) to 1 (maximum dispersion). Calculations were performed using Excel and ArcGIS. Finally, the temporal trend of G was compared with groundwater level trends to analyze the interplay between vegetation spatial structure and water resource availability.

The analysis revealed significant and contrasting trends in groundwater levels and vegetation dispersion in Rashtkhar County. Groundwater elevation showed a severe and nearly continuous decline over the ~35-year period, dropping approximately 50 meters from above 1110m to just over 1060m. This drastic reduction highlights critical pressure on groundwater resources and aquifer depletion. Conversely, Shannon's relative entropy (G) for vegetation cover, measuring spatial dispersion, followed a different trajectory. G increased sharply from 0.801 in 1990 to 0.913 in 2000. Despite minor fluctuations, it maintained a high level with a slight upward trend, reaching 0.924 in 2023. This indicates a sustained shift towards greater heterogeneity and spatial dispersion of vegetation cover. While the total vegetation area mapped via NDVI showed an overall increase (from ~8,000 ha to nearly 30,000 ha), its spatial distribution changed, with increased contributions from low and high elevation zones at the expense of mid-elevation areas. The key finding is the stark contrast: severe groundwater depletion occurred concurrently with increased (or stabilization at high levels of) vegetation spatial dispersion. This seemingly paradoxical outcome likely does not signify ecological improvement. Instead, it strongly suggests a complex structural rearrangement of the landscape driven by adaptation to water stress. The increased dispersion might result from factors like shifts towards more drought-resistant but potentially scattered crops (e.g., saffron), fragmentation of agricultural lands due to changing economic viability or land tenure, uneven development, or the patchy survival of native vegetation in micro-refugia. The analysis also confirmed that topography significantly influences how this dispersion manifests, modulating the vegetation system's response to environmental pressures like water scarcity.

This study quantitatively assessed vegetation spatial dispersion in Rashtkhar County using Shannon's relative entropy, relating it to groundwater trends and topography. A major finding was the contrasting long-term trends: a severe, continuous ~50-meter decline in groundwater levels (approx. 1986-2022) alongside a significant increase and stabilization of vegetation spatial dispersion (G rising from 0.801 in 1990 to 0.924 in 2023). This increased heterogeneity, occurring amidst resource depletion, is interpreted not as ecological recovery but as evidence of landscape structural rearrangement. This rearrangement likely reflects adaptive responses to water stress, such as changes in land use, cropping patterns towards more scattered cultivation, land fragmentation, or patchy vegetation survival. Topography was confirmed as a key factor modulating these spatial patterns. The research demonstrates the utility of Shannon's relative entropy as a valuable quantitative tool for capturing complex spatial dynamics and their interactions with environmental drivers like water availability in arid/semi-arid regions. It highlights that relying solely on overall vegetation indices can be misleading, and understanding spatial structure is crucial for assessing ecosystem sustainability. These findings underscore the need to incorporate such spatial metrics into sustainable resource management frameworks, particularly for developing integrated water conservation and land use planning strategies in fragile ecosystems under pressure. Future work could enhance this understanding by incorporating detailed land use data, grazing information, and higher-resolution remote sensing inputs.

کلیدواژه‌ها [English]

  • Groundwater
  • Vegetation Cover Dispersion
  • Shannon Entropy
  • Remote Sensing
  • Roshtkhar
Abdi Torbaghan, J., Sarrafi, M., & Razavian, M. (2020). Urban physical development analysis using Shannon entropy, Holdren, and Moran models (Case study: Kashmar city). Sustainable Development of Geographic Environment, 1, 53–72. [In Persian]
Ahmadi, H., Masoudian, S., & Kaviani, M. (2019). Analysis of vegetation cover changes in arid regions of Iran using spatial indices. Rangeland and Watershed Management Research, 25(3), 345–360. [In Persian]
Ahmadi, K., Sahak, A. S., & Sahak, A. T. (2023). Evaluation of urban sprawl and land use/cover variation patterns through remote sensing data: A case study in Kabul City, Afghanistan. European Journal of Environment and Earth Sciences, 4(6), 10–20. https://doi.org/10.24018/ejgeo.2023.4.6.434
Almalki, R., Khaki, M., Saco, P. M., & Rodriguez, J. F. (2022). Monitoring and mapping vegetation cover changes in arid and semi-arid areas using remote sensing technology: A review. Remote Sensing, 14(20), 5143. https://doi.org/10.3390/rs14205143
Asakereh, H., Taheri Alam, S., & Farhadi, N. (2024). NDVI changes in relation to Iran’s precipitation climate. Geographic Information Quarterly “Sepehr”. [In Persian]
Behling, R., Roessner, S., Foerster, S., Saemian, P., Tourian, M. J., Portele, T. C., … & Lorenz, C. (2022). Interrelations of vegetation growth and water scarcity in Iran revealed by satellite time series. Scientific Reports, 12, 20784. https://doi.org/10.1038/s41598-022-24712-6
Behrangmanesh, M., Khosravi, H., Azarnivand, H., & Senator, A. (2020). Quantifying vegetation cover changes using remote sensing (Case study: Fars Province). Plant Ecosystem Conservation Journal, 7(15), 295–318. [In Persian]
Burrell, A. L., Evans, J. P., & De Kauwe, M. G. (2020). Anthropogenic climate change has driven over 5 million km² of drylands towards desertification. Nature Communications, 11, 3853. https://doi.org/10.1038/s41467-020-17710-7
Cushman, S. A. (2021). Entropy in Landscape Ecology: A Quantitative Textual Multivariate Review. Entropy, 23(11), 1425. https://doi.org/10.3390/e23111425
Food and Agriculture Organization of the United Nations. (2020). Supporting sustainable agricultural development in global drylands. https://www.fao.org/partnerships/academia/news/news-detail/Supporting-sustainable-agricultural-development-in-global-drylands/en
Ghaffari, S., Ghorbani, A., Ma'mari, M., Mostafazadeh, R., Bidarlord, M., & Kakeh Mami, A. (2020). Modeling and identifying influencing factors in the distribution of Festuca ovina species using maximum entropy method in the northern rangelands of Ardabil Province. Iranian Journal of Rangeland and Desert Research, 27(3), 433–462. [In Persian]
Halebiyan, A., Shaemi, A., & Nourbakhsh, S. (2024). Vegetation dynamics in inner and outer buffer zones of anthropogenic activities in central Zagros. Plant Ecosystem Conservation Journal, 11(23), 1–17. [In Persian]
Huang, F., Zhang, D., & Chen, X. (2019). Vegetation response to groundwater variation in arid environments: Visualization of research evolution, synthesis of response types, and estimation of groundwater threshold. International Journal of Environmental Research and Public Health, 16(10), 1849. https://doi.org/10.3390/ijerph16101849
Huckeba, G., Andresen, B., & Roach, T. N. (2023). Multi-scale spatial ecology analyses: a Kullback information approach. Landscape Ecology, 38(3), 645-657.
Jones, H. G., & Vaughan, R. A. (2010). Remote sensing of vegetation: principles, techniques, and applications. Oxford University Press.
Kamanroudi Kajouri, M., Zanganeh, A., Karami, T. A., & Gholinia, S. (2020). Analyzing sprawl and spatial changes of Babol city. Human Geography Research, 52, 889–902. [In Persian]
Kéfi, S., Rietkerk, M., Alados, C. L., Pueyo, Y., Papanastasis, V. P., Elaich, A., & de Ruiter, P. C. (2007). Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature, 449(7159), 213–217. https://doi.org/10.1038/nature06111
Liu, Y., Wu, G., Ma, B., Wu, T., Wang, X., & Wu, Q. (2024). Revealing climatic and groundwater impacts on the spatiotemporal variations in vegetation coverage in marine sedimentary basins of the North China Plain, China. Scientific Reports, 14(1), 10085.
Mehrani, A., Riazi, B., Mirbagheri, S. A., & Khorasani, N. A. (2021). Monitoring vegetation cover changes in Golestan Province and international wetlands (Alma Gol, Ala Gol, and Aji Gol) and its causes based on bi-temporal NDVI analysis. Plant Environmental Physiology, 16(64), 97–111. [In Persian]
Mohammadiyari, F., Pourkhabaz, H., Tavakoli, M., & Aghdar, H. (2015). Mapping vegetation cover and monitoring its changes using remote sensing and GIS techniques (Case study: Behbahan County). Geographic Information Quarterly “Sepehr”, 23(92), 23–34. [In Persian]
Nikpour, A., Amoonia, H., & Shokri, S. (2022). Measurement and evaluation of urban sprawl in coastal areas – Case study: Babolsar County. Geographic Information Quarterly “Sepehr”, 31, 161–175. [In Persian]
Nowosad, J., & Stepinski, T. F. (2018). Information-theoretical approach to measuring landscape complexity. bioRxiv, 383281.
Peng, L., Wan, Y., Shi, H., Anwaier, A., & Shi, Q. (2023). Influence of climate, topography, and hydrology on vegetation distribution patterns—Oasis in the Taklamakan Desert hinterland. Remote Sensing, 15(22), 5299. https://doi.org/10.3390/rs15225299
Rahimi, E., & Jung, C. (2025). Analyzing vegetation heterogeneity trends in an urban-agricultural landscape in Iran using continuous metrics and NDVI. Land, 14(2), 244. https://doi.org/10.3390/land14020244
Rahimi, M., & Hosseinali, F. (2021). Monitoring expansion and analyzing the spatial distribution of Zanjan city over four decades using statistical and spatial analyses. Urban Structure and Function Studies, 8, 168–190. [In Persian]
Rahmi, M. A. A., Parikesit, P., & Withaningsih, S. (2024). Vegetation change analysis using Normalized Difference Vegetation Index (NDVI) in Sumedang Regency. In E3S Web of Conferences (Vol. 495, p. 02007). EDP Sciences.
Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
Shatri, M., Izadi, A., & Izadi, M. (2023). Consequences of Changing the Pattern of Saffron and Pistachio Cultivation and its Impact on the Development of Rural Areas (Case study: Rashtkhwar city). Geography and Development, 21(72), 178–204. [In Persian]
Shekari Badi, A., Mo'tamedi Rad, M., & Mohammadiya, M. (2015). Integrating ANP model and Shannon entropy index to estimate factors affecting the occurrence and zoning of landslide hazard (Case study: Faroub-Rouman Basin, Neyshabur). Geographical Studies of Arid Regions, 6(22), 89–103. [In Persian]
Sherwin, W. B., & Prat i Fornells, N. (2019). The Introduction of Entropy and Information Methods to Ecology by Ramon Margalef. Entropy, 21(8), 794. https://doi.org/10.3390/e21080794
Tabatabaeezadeh, M., Hadian, F., Hosseini, S. Z. A., Barkhordari, J., & Khosravi, H. (2014). Assessing plant adaptation to precipitation changes in desert areas using NDVI (Case study: Ardakan-Aqda Plain). Natural Ecosystems of Iran, 5(1), 23–36. [In Persian]
Wang, C., & Zhao, H. (2018). Spatial heterogeneity analysis: Introducing a new form of spatial entropy. Entropy, 20(6), 398. https://doi.org/10.3390/e20060398
Yousefi Roshan, M., & Amoonia, H. (2022). Estimating vegetation cover in Babolsar County using the Normalized Difference Vegetation Index (NDVI). Physical Geography, 4(57), 127. [In Persian]
Yousefi Roshan, M., & Amoonia, H. (2023). Estimation of vegetation and agricultural lands in Babolsar County using Sentinel-2 satellite imagery and NDVI index. Environmental Science and Technology, 135(8), 143. [In Persian]