آشکارسازی فرونشست زمین در آبخوان دشت اسفراین با استفاده از تکنیک‌های پیشرفته سنجش از دور راداری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد مهندسی عمران، گرایش مهندسی و مدیریت منابع آب، دانشگاه حکیم سبزواری

2 گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه حکیم سبزواری

3 مرکز پژوهشی علوم جغرافیایی و مطالعات اجتماعی، دانشگاه حکیم سبزواری

4 گروه جغرافیای طبیعی، دانشکده علوم جغرافیایی و برنامه‌ریزی، دانشگاه اصفهان

10.22034/grd.2025.23193.1660

چکیده

فرونشست زمین پدیده‌ای مخرب است که عمدتاً در اثر استخراج بیش از حد آب‌های زیرزمینی ایجاد می‌شود و منجر به خسارات و تلفات قابل توجهی می‌شود. این پدیده در سراسر جهان، به ویژه در مناطق کم آب ایران مانند دشت اسفراین که نرخ فرونشست بالایی را تجربه می‌کند، شایع است. تحقیق حاضر با استفاده از روش تداخل‌سنجی راداری، فرونشست در آبخوان دشت اسفراین را با استفاده از ۵۵ تصویر Sentinel-1A از سال 1393 تا 1400 تجزیه و تحلیل کرد. در این مطالعه همچنین تغییرات سطح آب زیرزمینی با استفاده از داده‌های آماری چاه‌های پیزومتری مورد بررسی قرار گرفت. نتایج تداخل‌سنجی راداری نشان داد که بخش‌های مرکزی و شمالی آبخوان اسفراین بیشترین نرخ فرونشست را تجربه می‌کنند. بطوریکه حداکثر نرخ فرونشست در منطقه‌ای به وسعت 80 کیلومترمربع واقع در بخش مرکزی آبخوان رخ داده که بیشترین تراکم چاه‌های بهره‌برداری و بیشترین وسعت اراضی کشاورزی منطقه را شامل می‌شود. همچنین میانگین فرونشست طی دوره آماری مورد مطالعه در آبخوان دشت اسفراین 6/12 سانتی‌متر در سال می باشد. از طرفی بررسی هیدروگراف آبخوان اسفراین حاکی از روند کاهشی سطح آب زیرزمینی بوده و به طور متوسط حدود ۳۶ سانتی‌متر افت سطح آب زیرزمینی در سال را نشان می‌دهد. به طور کلی می توان نتیجه گرفت برداشت بیش از حد از منابع آب زیرزمینی و افت سطح آب زیرزمینی آبخوان دشت اسفراین می تواند یکی از دلایل احتمالی فرونشست زمین در منطقه باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Detecting Land Subsidence in the Esfarayen Plain Aquifer Using Advanced Radar Remote Sensing Techniques

نویسندگان [English]

  • Behnam Besharatifard 1
  • Ehsan Behnamtalab 2
  • Mahdi Zarei 3
  • Rahman Zandi 4
1 Master of Civil Engineering, Water Resources Engineering and Management Orientation, Hakim Sabzevari University
2 Department of Civil Engineering, Faculty of Engineering, Hakim Sabzevari University
3 Research Center of Social Sciences & Geographical studies, Hakim Sabzevari University
4 Department of Physical Geography, Faculty of Geographical Sciences and Planning, University of Isfahan
چکیده [English]

1. Introduction

Land subsidence is a significant and often devastating geological phenomenon that can lead to severe consequences for both human societies and infrastructural stability. It refers to the gradual sinking or settling of the Earth's surface, which, if left unchecked, can cause irreparable financial losses, damage to critical infrastructure, and threats to human safety. The driving forces behind land subsidence are typically related to human activities, especially the excessive extraction of natural resources. Among these, the over-withdrawal from groundwater aquifers is one of the most prevalent and damaging causes. This phenomenon occurs worldwide, with water-scarce countries like Iran increasingly facing land subsidence issues. In Iran, the problem has become particularly pronounced in the eastern and central regions, where groundwater resources are heavily exploited to meet the demands of agriculture, industry, and urbanization. One such affected area is the Esfarayen plain, which suffers from rapid land subsidence rates. The Esfarayen plain, being one of these vulnerable zones, has drawn particular attention from researchers and policymakers due to its high rate of land sinking. This research aims to provide a detailed assessment of land subsidence in the Esfarayen aquifer, using advanced remote sensing technology—specifically radar interferometry—to evaluate its extent.

2. Research Methodology

The methodology employed in this study combines remote sensing techniques with hydrogeological data analysis. The primary data source consists of 55 Sentinel-1A satellite Synthetic Aperture Radar (SAR) images, captured over seven years from 2015 to 2022. These images serve as the foundation for the land deformation analysis, providing high-resolution data capable of detecting even minor changes in ground elevation. The processing of these images was carried out using specialized software tools, primarily the Sentinel Application Platform (SNAP) and ArcGIS. The raw SAR data underwent a series of pre-processing steps, including calibration, and filtering, to prepare them for interferometric analysis. The key technique used is radar interferometry, also known as InSAR (Interferometric Synthetic Aperture Radar). This method involves comparing complex phase differences between pairs of SAR images to detect surface displacement with centimeter or even millimeter accuracy. The application of InSAR allowed us to estimate the amount and spatial distribution of land subsidence over the study period, resulting in a detailed and comprehensive map of subsidence zoning within the Esfarayen aquifer. To examine the relationship between groundwater abstraction and land subsidence, the study also incorporated hydrogeological data. Changes in water table levels were monitored using records from existing piezometric wells and data on groundwater extraction. A groundwater level contour map was constructed using ArcGIS, facilitating the visualization of water level declines and their correlation with observed land subsidence patterns.

Results and discussion

The analysis of InSAR data revealed that land subsidence in the Esfarayen aquifer varies significantly acrossThe analysis of InSAR data indicated that the central and northern parts of the aquifer are most affected, with the maximum subsidence rate reaching 12.6 centimeters annually within an 80-square-kilometer zone characterized by dense well exploitation and extensive agricultural activities located in the central part. The overall average subsidence rate in the area was found to be around 28 millimeters per year over the study period. These measurements suggest that the subsidence in these zones is continuous and relatively rapid, primarily driven by ongoing groundwater extraction. Furthermore, the hydrogeological data underscored a concerning trend: the water table in the aquifer has been steadily declining, with an average annual decrease of about 36 centimeters over the seven years. This decline is a clear indicator of overexploitation of groundwater resources, placing additional stress on the aquifer's stability. A crucial finding from the correlation analysis suggests that for every meter reduction in the groundwater level, the land surface subsides by around 8 centimeters. This relationship emphasizes the direct impact of groundwater withdrawal on land stability and underscores the importance of sustainable water management. The spatial analysis also highlighted that areas with the highest density of groundwater extraction wells coincide with regions experiencing the most significant land subsidence. The distribution of these wells, often concentrated in agricultural zones, exacerbates the problem by extracting large volumes of water, reducing pore pressure within the soil, and causing it to compact. This compaction leads to permanent ground settlement, which in turn can damage infrastructure such as roads, pipelines, and buildings, and increase the risk of flooding and other land-related hazards. The findings of this research align with global observations that excessive groundwater pumping leads to land subsidence, a process that can become irreversible if not addressed promptly.

3. Conclusion

The comprehensive analysis conducted in this study confirms a strong link between groundwater abstraction and land subsidence in the Esfarayen plain. The combination of remote sensing data and hydrogeological investigations revealed that the most significant land sinking occurs in zones with high well density and steep groundwater level declines. The results show that land subsidence is an ongoing process with potentially severe consequences for infrastructure, agriculture, and most importantly, the sustainability of groundwater resources. Given the multifaceted nature of land subsidence, which is influenced by various natural and anthropogenic factors, it is recommended that future research expands to include other potential causes such as mining activities and land-use changes. Moreover, establishing a sustainable groundwater management framework and implementing measures to reduce excessive withdrawals are urgent tasks to mitigate future land subsidence. Proactive monitoring and enforcement of water use regulations, combined with efforts to improve water use efficiency, could significantly slow or halt further subsidence and help secure the long-term vitality of the Esfarayen aquifer.

کلیدواژه‌ها [English]

  • Land subsidence
  • radar interferometry
  • groundwater
  • Esfarayen aquifer
  • piezometer well
  • References

     

    • Abdollahi, S., Pourghasemi, H. R., Ghanbarian, G. A., & Safaeian, R. (2019). Spatial simulation and land-subsidence susceptibility mapping using maximum entropy model. Journal of Watershed Management Research, 10(20), 133-144. http://dx.doi.org/10.29252/jwmr.10.20.133
    • Aghayary, L., Abedini, M., Asghari, S. (2022). Estimation of subsidence rate using radar interferometry technique and groundwater parameters and land use (Case study: Ardabil plain). Quantitative Geomorphological Research. Page 117-132. (In Persian). https://doi.org/10.22034/gmpj.2022.304999.1302
    • Ahmadi, n., mousavi, z., & masoumi, z. (2018). Khoramdarreh Subsidence Estimation Using SAR Interferometry and Investigation its Risks. Iranian Journal of Remote Sensing & GIS, 10(3), 33-52. https://gisj.sbu.ac.ir/article_96591_9ca242cc61814e24ae015314fcb4bc45.pdf
    • Amiri, F., Momeni, M., & Mirassi, S. (2023). Assessing subsidence risk of Lordegan county using radar interferometry technique. Quantitative Geomorphological Research. 12(2): 230-244. (In Persian). 22034/gmpj.2023.405603.1443
    • Bramanto, B., Gumilar, I., Sidiq, T. P., Rahmawan, Y. A., & Abidin, H. Z. (2023). Geodetic evidence of land subsidence in Cirebon, Indonesia. Remote Sensing Applications: Society and Environment, 30, 100933. https://doi.org/10.1016/j.rsase.2023.100933
    • Crosetto, M., Gili, J.A., Monserrat, O., Cuevas-González, M., Corominas, J., Serral, D (2013). Interferometric SAR monitoring of the Vallcebre landslide (Spain) using corner reflectors, Natural Hazards and Earth System Sciences, Vol. 13, No 4, 923-933. https://doi.org/10.1016/j.jaridenv.2020.104238
    • Declercq, P. Y., Gérard, P., Pirard, E., Walstra, J., & Devleeschouwer, X. (2021). Long-term subsidence monitoring of the alluvial plain of the scheldt river in antwerp (Belgium) using radar Remote Sensing, 13(6). https://doi.org/10.3390/rs13061160
    • Ebrahimi., A, Gahsemi, A., & Ganjaeian, H. (2020). Monitoring the Subsidence Rate of Pakdasht Urban Area Using Radar interferometry method. Geomorphology and Human Relationships. 2(4). Pages: 29-41. (In Persian). https://dor.isc.ac/dor/20.1001.1.26453851.1399.2.4.3.1
    • Emadodin, S., & Nazari Gazik, Z. (2023). Estimation of Subsidence Rate and Groundwater Level Changes in Mashhad Plain. Geography and Development. 21(73): 221-239. (In Persian). https://doi.org/10.22111/gdij.2023.8029
    • Farzinkia, R., Zanganeasadi, M.A., Amirahmadi., A., & Zandi, R. (2019). The Relationship between Tectonic Activity and Its Impact on Land Subsidence in the Jovein Basin. Hydrogeomorphology. 6(20): 165-185. (In Persian).
    • Fijani, E., & Zarei, P. (2024). Evaluation of land subsidence potential in Humand-Absard aquifer using remote sensing methods and its relationship with groundwater abstraction. Hydrogeology. 9(1): 1-15. (In Persian). https://doi.org/10.22034/hydro.2024.60463.1312
    • Francesco, R.D. (2013). Principles of soil mechanics. IV. Settlement and consolidation of clay. Engineering News‐Record, 95, 874. https://doi.4236/am.2013.44099
    • Helali, L., Bagheri, R., & Momeni, A. (2024). Investigation of land subsidence using radar interferometry technique (Case study: Semnan plain). Hydrogeology. 9(1): 86-100. (In Persian). https://doi.org/10.22034/hydro.2024.56752.1290
    • Ho Tong Minh, D., Hanssen, R., & Rocca, F. (2020). Radar Interferometry: 20 Years of Development in Time Series Techniques and Future Perspectives. Remote Sensing, 12(9), 1364. https://www.mdpi.com/2072-4292/12/9/1364
    • Holzer, T. L., & Galloway, D. L. (2007). Impacts of land subsidence caused by withdrawal of underground fluids in the United States. Humans as Geologic Agents. https://doi.org/10.1130/2005.4016(08)
    • Hu, B., Zhou, J., Wang, J. Chen, Z., Wang, D., & Xu, S. (2009). Risk assessment of land subsidence at Tianjin coastal area in China. Environ Earth Sciences. 59, 269–276. https://doi.org/10.1007/s12665-009-0024-6
    • Hunt, R. E. (2007). Geologic hazards: a field guide for geotechnical engineers. CRC press.
    • Janbaz fotamy, M., Kholghi, M., Abdeh Kolahchi, A., & Roostaei, M. (2020). Land Subsidence Assessment due to Groundwater Exploration by using Differential Radar Interferometry Technique, Case Study: Qazvin province, Journal of Iran-Water Resources Research,Vol.16, N.3, 133-147. (In persian). https://dor.isc.ac/dor/20.1001.1.17352347.1399.16.3.10.8
    • Jeanne, P., Faar, T. G., Rutqvist, J., & Vasco, D. W. (2019). Role of agricultural activity on land subsidence in the Jouquin Valley, California, Journal of Hydrology, Vol. 569, 462 -469. https://www.sciencedirect.com/science/article/abs/pii/S0022169418309661
    • Jedari E. (2004). Geomorphology of Iran, Tehran, Payam Noor University Publications, 7th edition. (In Persian).
    • Khamehchiyan M. (1995). Study on geotechnical and Quaternary geo-environmental aspects of land subsidence due to withdrawal of ground water.
    • Khorrami, M., Alizadeh, B., Ghasemi Tousi, E., Shakerian, M., Maghsoudi, Y., & Rahgozar, P. (2019). How Groundwater Level Fluctuations and Geotechnical Properties Lead to Asymmetric Subsidence: A PSInSAR Analysis of Land Deformation over a Transit Corridor in the Los Angeles Metropolitan Area. Remote Sensing, 11(4), 377. https://www.mdpi.com/2072-4292/11/4/377
    • Kohbanani, H., Yazdani, M.R., & Hosseini, S.K. (2019). Mapping Land Subsidence Hazard through InSAR (Case study: Kashmar and Khalil Abad plain). 7(13): 65-76. (In Persian).https://doi.org/10.22034/jdmal.2019.36526
    • Li, Z., Chen, Q., Xue, Y., Qiu, D., Chen, H., Kong, F., & Liu, Q. (2023). Numerical investigation of processes, features, and control of land subsidence caused by groundwater extraction and coal mining: a case study from eastern China. Environmental Earth Sciences, 82(3), 82. https://doi.org/10.1007/s12665-023-10779-5
    • Liosis, N., Marpu, P. R., Pavlopoulos, K., & Ouarda, T. B. (2018). Ground subsidence monitoring with SAR interferometry techniques in the rural area of Al Wagan, UAE. Remote Sensing of Environment, 216, 276-288. https://doi.org/10.1016/j.rsase.2023.100933
    • Maleki, R., Khavaruan, H., & Asghari, S. (2023). Measuring the amount of land subsidence using radar interferometry technique (Case study: Earthquake-affected areas west of Kermanshah). Journal of Natural Environmental Hazards, Vol.12, Issue 38. (In persian). https://doi.org/10.22111/jneh.2023.42823.1911
    • Massonnet, D., & Feigl, K. L. (1998). Radar interferometry and its application to changes in the Earth's surface. Reviews of geophysics, 36(4), 441-500.
    • Mehrabi, A., Derakhshani, R., Nilfouroushan, F., Rahnamarad, J., & Azarafza, M. (2023). Spatiotemporal subsidence over Pabdana coal mine Kerman Province, central Iran using time-series of Sentinel-1 remote sensing imagery. Episodes Journal of International Geoscience, 46(1), 19-33. https://doi.org/10.18814/epiiugs/2022/022009
    • Mohammady, M., Pourghasemi, H., & Mojtaba, M. (2021). Investigation of Subsidence Susceptibility in the Semnan Plain Using Entropy Model. Journal of Watershed Management Research, 12(23), 75-85. http://dx.doi.org/10.52547/jwmr.12.23.75
    • Najafi Igdir, A., Choubin, B., & Shirani, K. (2024). Estimation of Land Subsidence in Salmas Plain Using Differential Interferometric Synthetic Aperture Radar Algorithm. Watershed Management Research. 37(1): 98-113. (In Persian). https://doi.org/10.22092/wmrj.2023.361200.1521
    • Poland, J. F. (1984). Guidebook to studies of land subsidence due to ground-water withdrawal.
    • Ranjgar, B., Razavi-Termeh, S. V., Foroughnia, F., Sadeghi-Niaraki, A., & Perissin, D. (2021). Land subsidence susceptibility mapping using persistent scatterer SAR interferometry technique and optimized hybrid machine learning algorithms. Remote Sensing, 13(7). https://doi.org/10.3390/rs13071326
    • Salehi Moteahd, F., Hafezi Moghaddas, N., Lashkaripour, G. R., & Dehghani, M. (2019). Geological parameters affected land subsidence in Mashhad plain, north-east of Iran. Environmental Earth Sciences, 78(14), 405. https://doi.org/10.1007/s12665-019-8413-y
    • Shafiei, N., Golimokhtari, L., Amirahmadi, A., & Zandi, R. (2021). Spatial analysis of land subsidence and groundwater loss using the GWR model (Case study: Noorabad Mamasani aquifer,). Journal of Geography and Palnning. 25(76): 159-171. (In Persian). https://doi.org/10.22034/gp.2021.11306
    • Smith, R. G., Knight, R., Chen, J., Reeves, J., Zebker, H., Farr, T., & Liu, Z. (2017). Estimating the permanent loss of groundwater storage in the southern S an J oaquin V alley, C alifornia. Water Resources Research, 53(3), 2133-2148. https://doi.org/10.1002/2016WR019861
    • Thu, T. M., & Fredlund, D. G. (2000). Modelling subsidence in the Hanoi City area, Vietnam. Canadian Geotechnical Journal, 37(3), 621-637. http://dx.doi.org/10.1139/cgj-37-3-621
    • Vaseteh, V. (2013). Management of groundwater level reduction in Esfrain Plain. National conference of non-operating defense in the agricultural sector. (in persian).

    Zandi R, Nasiri A, Shafiei N, & Farzin Kia R. (2019). The application of remote sensing in environmental sciences (principles and techniques). Greenery Hakim Sabzevari University.(In persian).

    Zanganeasadi, M.A., Zandi, R., & Shafiei, N. (2023). Measurement and evaluation of rice and summer crops on the amount of land subsidence (case study: Noorabad Reservoir, Fars Province, Iran). Quantitative Geomorphological Research. 12(2): 184-199. (In Persian). 10.22034/gmpj.2023.393690.1432