مدل‌سازی سهم اهمیت شاخص‌های اقلیمی و نمایه‌های تغییر اقلیم مؤثر بر گردوغبار یزد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیئت علمی بخش تحقیقات بیابان موسسه تحقیقات جنگلها و مراتع کشور ،سازمان تحقیقات ،آموزش و ترویج کشاورزی ، تهران، ایران.

2 عضو هیئت علمی بخش تحقیقات بیابان موسسه تحقیقات جنگلها و مراتع کشور، تهران، ایران

چکیده

در این مقاله به منظور تعیین سهم عوامل اقلیمی موثر بر رخداد گردوغبار از دادههای مربوط به پارامترهای هواشناسی و شاخص‌های اقلیمی و برخی از نمایه های تغییر اقلیم استفاده شده است. نمایه‌های تغییر اقلیم با استفاده از نرم‌افزارClimPACT در محیط برنامه نویسی R 2.10 محاسبه شدند. در این تحقیق گردوغبارهای داخلی و خارجی از هم تفکیک و سپس به منظورتعیین سهم اهمیت هریک از عوامل در رخداد انها از اجراهای مختلف شبکه‌ عصبی پرسپترون چند لایه استفاده گردید. در این بررسی70 درصد داده‌ها به عنوان داده‌ی آموزشی و30 درصد داده‌ها به عنوان داده‌ی تست وارد شبکه گردید. جهت ارزیابی دقت توابع مختلف، مجموع مربعات خطای داده‌های آموزشی، مجموع مربعات خطای داده‌های تست، خطای نسبی داده‌های آموزشی، خطای نسبی داده‌های تست و همچنین ضریب همبستگی بین مقادیر اندازه‌گیری شده و تخمین‌زده شده رخداد گردوغبار و عوامل اقلیمی با یکدیگر مقایسه گردید و در نهایت مدلی که کمترین میزان خطا و بیشترین ضریب همبستگی را نشان داد، به عنوان مدل بهینه انتخاب شد. نتایج نشان داد؛ 77 درصد گردوغبارها با منشاء خارج از ایستگاه و 33 درصد با منشاء اطراف ایستگاه ثبت شده است. . عامل متوسط حداقل رطوبت، بارش موثر و فراوانی رخداد باد و دو روز مرطوب متوالی به ترتیب بیشترین سهم اهمیت را در رخداد گردوغبارهای خارجی داشته‌اند.در رخداد گردوغبارهای داخلی و یا با منشاء اطراف ، متوسط رطوبت وسرعت باد 6 متربرثانیه، خشکسالی SPEIو باد با سرعت 15 متر بر ثانیه به ترتیب اهمیت قرار دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling the contribution of the importance of climate indicators and climate change indices affecting Yazd dust

نویسندگان [English]

  • Fatemeh Dargahian 1
  • samaneh Razavizadeh 2
1 Research institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
2 Research Institute of Forests and Rangelands, Agricultural Research Education and Extension Organization, Tehran, Iran
چکیده [English]

Although most dust storms, especially those prevailing in Iran, are often regional in nature, But local centers dust, the dust belt and specifically in Iran, played a significant role. One of the origins of local dust in this belt is Yazd city and salt domes northeast of Ardakan. Understanding the characteristics of dust storms is important in terms of type, frequency, location and time of occurrence. Due to the dry climatic conditions and strong and erosive winds on it, the city of Yazd is faced with various dust events every year, which causes significant damage to the economic and biological resources of the city. In addition to climatic parameters and indicators, some indicators reveal that climate change can also affect the course of changes in dust occurrence. In addition to climatic parameters and indicators, some indicators reveal that climate change can also affect the process of change in the occurrence of dust in order to identify these indicators from the software ClimPACT is based on RClimDEX software and runs in R 2.10 software environment. In addition to identifying the trend of dust changes, the purpose of this study is to determine the importance of each factor affecting the occurrence of dust in Yazd. For this purpose, analysis and comparison of different functions of neural network, multilayer perceptron was used and finally the model with the least error rate and the highest correlation coefficient, as the optimal model to investigate the share of climatic factors affecting the occurrence of dust originating around and outside the station was estimated based on the optimal model. The occurrence of internal and external dust (dependent variable) was modeled and analyzed and the most important determining factors in the occurrence of internal and external dust were determined

کلیدواژه‌ها [English]

  • Internal and external dust
  • wind corridor
  • fine sediments
  • Neural network models
  1. - Achakulwisut, P., Mickley L.J., & Anenberg S.C. (2018). Drought-sensitivity of fine dust in the US Southwest. Implications for air quality and public health under future climate change. Environmental Research Letters, 13(5), 1-25.‏

    - Albani, S., & Mahowald, N.M. (2019). Paleodust insights into dust impacts on climate. Journal of Climate, 32(22), 7897-7913.

    - Arabic Aliabad, F., Mobin, M. H., & Zare, A. (1396). Assessing the role of drought on the occurrence of dust in Yazd, 4th National Conference on Wind Erosion and Dust Storms, Yazd.

    - Bayati, H., &Najafi A. (2011). Application of Artificial Neural Network for Assessing of the Stem Volume Trees. Journal of Renewable Natural Resources, 2(2), 52-57 [In Persian].

    - Bogle, R., Redsteer, M.H, &Vogel, J. (2015). Field measurement and analysis of climatic factors affecting dune mobility near Grand Falls on the Navajo Nation, southwestern United States. Geomorphology, 228,41-51.

    - Chen, F., Chen, S., Zhang, X., Chen, J., Wang, X., Gowan, E. J., & Xu, Q. (2020). Asian dust-storm activity dominated by Chinese dynasty changes since 2000 BP. Nature communications, 11(1), 1-7.

    - Csavina, J., Field, J., Félix, O., Corral-Avitia, A.Y., Sáez, A.E., & Betterton, E.A. (2014). Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates. Science of the Total Environment, 487,82-90.

    - Ebrahimi Khosafi, Z., &Dargahian, F. (1397). Investigation of the effect of climatic parameters on the change of concentration of suspended particles less than 10 micrometers and its relationship with the occurrence of wind erosion in arid regions. Quarterly Journal of Geographical Studies of arid regions, 34: 76-92. (In Farsi).

    -Ebrahimi khusfi Z. (2020) Analysis of Temporal Changes of Dust Events and Determination of the Contribution of Climate Factors affecting it in Arid Regions Based on the Ridge Regression Analysis (A Case Study: Yazd City). 24 (1):145-158(In Farsi).

      -Gu, Y., Liou, K. N., Chen, W., & Liao, H. (2010). Direct climate effect of black carbon in China and its impact on dust storms. Journal of Geophysical Research: Atmospheres, 115(D7).‏

    -Ghanem A.A. (2020). Climatic Characteristics of Dust Storms in Jordan. American Journal of Climate Change, 9(2), 136-146.‏

    -Goudie A.S. (2020). Dust storms and human health. In Extreme Weather Events and Human Health. 13-24.

    - Ghorbani, S., &Modarres, R. (2017). Modeling the relationship between the frequency of dust storms and climatic variables in desert areas of Iran, the 4th National Conference on Wind Erosion and Dust Storms, Yazd (in Farsi).

    - Guan Q. Sun X. Yang J. Pan B. Zhao S. &Wang L. (2017). Dust Storms in Northern China: Long-Term Spatiotemporal Characteristics and Climate Controls. Journal of Climate. 30(17): 6683-6700.

    - Hamidi M. (2020). The key role of water resources management in the Middle East dust events. CATENA, 187, 104337.

    1. Heidarnejad, M., Lotfi Mohammadabad, F., &Zare Arnani, M, 2013, Study of the Relationship between Drought and Dust Storms, Third National Conference on Wind Erosion and Dust Storms, Yazd. (In Farsi).
    2. Jabali, A., Zare, M., Eghtesadi, M.R., & Jafari, R. (2017). A study of changes in dust-related phenomena in Yazd, 4th National Conference on Wind Erosion and Dust Storms, Yazd. (In Farsi).
    3. Khaliqi Sigaroudi, S., Shah Bandari Ghouchani, R., Dadfar, S., &Kamrani Nogh, F. (2010). Investigating the Relationship between Drought and Dust Storms Case Study: Yazd Province, the Second National Conference on Wind Erosion and Dust Storms, Yazd (In Farsi).
    4. Lababpour A. (2020). The response of dust emission sources to climate change: Current and future simulation for southwest of Iran. Science of the Total Environment, 714: 136821

    - Li, J., Garshick, E., Al-Hemoud, A., Huang S. & Koutrakis P. (2020). Impacts of meteorology and vegetation on surface dust concentrations in Middle Eastern countries. Science of the Total Environment, 712: 136597.

    -Namdari, S., Karimi, N., Sorooshian, A., Mohammadi, GH, &, Sehatkashani, S. (2018). Impacts of climate and synoptic fluctuations on dust storm activity over the Middle East. Atmospheric environment, 173, 265-276 (In Farsi).

    - Naemi, M., Yousefi, M.J., Khosroshahi, M., Zandifar, S., & Ebrahimi Khosfi, Z. (2020), Investigation of the effects of climatic factors on dust, a case study: West of Khorasan Razavi province, Geographical explorations of desert areas, 7 (2), 25-45 (In Farsi).

    1. Mesbahzadeh, T., Mirakbari, M., Mohseni Saravi, M., Soleimani Sardoo, F., & Krakauer, N. Y. (2020). Joint Modeling of Severe Dust Storm Events in Arid and Hyper Arid Regions Based on Copula Theory: A Case Study in the Yazd Province, Iran. Climate, 8(5), 64 (in Farsi).
    2. Mesbahzadeh, T., Mirakbari, M., Mohseni Saravi, M., & Khosravi, H. (2017). Investigation of the relationship between climatic parameters affecting the occurrence of dust, 4th National Conference on Wind Erosion and Dust Storms, Yazd (In Farsi).

    -Middleton, N. (2019). Variability and trends in dust storm frequency on decadal timescales: Climatic drivers and human impacts. Geosciences, 9(6), 261.

    - Omidvar, K. (2010). an Analysis of the Storm and Stormy Wind Regime in Yazd, Journal of Space Planning and Planning, 14 (1), 83-105 (In Farsi).

    1. Pu, B., & Ginoux P. (2017). Projection of American dustiness in the late 21 st century due to climate change. Scientific Reports, 7(1), 1-10.

    -Schepanski, K. (2018). Transport of mineral dust and its impact on climate. Geosciences, 8(5), 151.

    -Sarkar, A., & Kumar, R. )2012(. Artificial Neural Networks for Event Based Rainfall-Runoff Modeling. Journal of Water Resource and Protection, 4, 891-897.

    - Saremi Naeini, M.A. (2016). Estimation of frequency, speed and direction of erosive winds and generators of dust and fine dust storms in Yazd province using Golbad, Goltofan and Golmaseh analysis, Journal of Desert Management, 4 (8), 96-106

    - Sharifi Pichun, M., & Miri, Z. (2017). Evaluation of the role of local winds in wind erosion (Case study: Golden Sand), Fourth National Conference on Wind Erosion and Dust Storms, Yazd (In Farsi).

    - Terz, O., & Erol K., M. (2005). Modeling of Daily Pan Evaporation. Journal of Applied Sciences, 5 (2), 368-372.

    - Vali, A. A., Mousavi, S. H., & Zamani, E. (2019). Statistical analysis of occurrence frequency of dust storms in Yazd province and its modeling based on climatic elements and vegetation cover. Journal of Spatial Analysis Environmental hazarts, 6(3), 121-142(In Farsi). ‏

    -Vali, A.A. Ramesht, M.H. Seyf, A. & Ghazavi R. (2011). Compare the performance of artificial neural networks and regression models to predict Environmental Planning, 22(4), 19-34  (In Farsi).

    1. Vali, A. Ebrahimi Khosafi, Z. Khosroshahi, M. & Ghazavi R. (2016). Determining the importance of the effect of various hydro-climatic parameters on the drying of Gavkhoni wetland using artificial neural network and remote sensing data. Journal of Desert Ecosystem Engineering, 5(12), 94-79 (In Farsi).